Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $565$ | |
| Group : | $C_2^4.C_2^3.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $5$ | |
| Generators: | (1,13,9,6,3,15,12,7)(2,14,10,5,4,16,11,8), (1,11,3,9)(2,12,4,10)(5,13,7,15)(6,14,8,16), (9,10)(11,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T84 128: 16T228 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
16T565, 16T587 x 2, 16T611 x 2, 16T651 x 2, 32T2796 x 2, 32T2797 x 2, 32T2798 x 4, 32T2799 x 4, 32T2800 x 2, 32T2801 x 2, 32T2879 x 2, 32T2880 x 2, 32T2996 x 2, 32T2997 x 2, 32T3179 x 4, 32T3180, 32T3181 x 4, 32T3182, 32T3183, 32T3184, 32T7557 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,11,13, 3, 7,10,16)( 2, 6,12,14, 4, 8, 9,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,11,14, 4, 7, 9,15)( 2, 6,12,13, 3, 8,10,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 7,12,16, 3, 5, 9,13)( 2, 8,11,15, 4, 6,10,14)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 7,11,16, 4, 5, 9,13)( 2, 8,12,15, 3, 6,10,14)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5,15, 7,13)( 6,16, 8,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 3,12)( 2,10, 4,11)( 5,15, 8,13)( 6,16, 7,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 3,12)( 2,10, 4,11)( 5,15, 7,14)( 6,16, 8,13)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,11, 3, 9)( 2,12, 4,10)( 5,13, 7,15)( 6,14, 8,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,11, 4, 9)( 2,12, 3,10)( 5,13, 7,16)( 6,14, 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,11, 4, 9)( 2,12, 3,10)( 5,13, 8,15)( 6,14, 7,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,13, 9, 5, 3,15,12, 8)( 2,14,10, 6, 4,16,11, 7)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,13, 9, 5, 3,16,12, 7)( 2,14,10, 6, 4,15,11, 8)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,15,10, 8, 3,13,11, 5)( 2,16, 9, 7, 4,14,12, 6)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,15, 9, 7, 3,14,12, 5)( 2,16,10, 8, 4,13,11, 6)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 326] |
| Character table: Data not available. |