Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $554$ | |
| Group : | $C_2^3.C_2^4.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,4,6,7)(2,3,5,8)(9,12,10,11)(13,15,14,16), (1,7,6,4)(2,8,5,3)(9,16,10,15)(11,14,12,13), (1,10,3,12,2,9,4,11)(5,13,7,16,6,14,8,15) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $C_8:C_2$ x 4, $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $(C_8:C_2):C_2$ x 2, $C_2^3 : C_4 $ x 2, $C_2 \times (C_8:C_2)$ x 2, $C_2 \times (C_2^2:C_4)$ 64: $((C_8 : C_2):C_2):C_2$ x 4, 16T72, 16T76, 16T95 128: 16T227 x 2, 16T252 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8:C_2$, $((C_8 : C_2):C_2):C_2$ x 2
Low degree siblings
16T485 x 32, 16T554 x 31, 32T2419 x 64, 32T2420 x 64, 32T2421 x 16, 32T2422 x 16, 32T2423 x 8, 32T2424 x 16, 32T2749 x 16, 32T2750 x 8, 32T2751 x 8, 32T2752 x 8, 32T2753 x 8, 32T2754 x 16, 32T6931 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,16)(12,15)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,13)(10,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,14)(10,13)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 7)( 4, 8)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 7)( 4, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 7)( 4, 8)( 9,10)(11,16)(12,15)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 7)( 4, 8)( 9,13)(10,14)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,16)(12,15)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,10)(11,16)(12,15)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,13,16)(10,12,14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,13,15)(10,11,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,11,13,16)(10,12,14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 6, 8)( 2, 4, 5, 7)( 9,12,13,15)(10,11,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,13,15)(10,11,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 6, 7)( 2, 3, 5, 8)( 9,12,13,15)(10,11,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 9, 3,11, 2,10, 4,12)( 5,14, 7,15, 6,13, 8,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 9, 3,11, 6,13, 8,16)( 2,10, 4,12, 5,14, 7,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 9, 4,12, 2,10, 3,11)( 5,14, 8,16, 6,13, 7,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 9, 4,12, 6,13, 7,15)( 2,10, 3,11, 5,14, 8,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,11, 3,10, 2,12, 4, 9)( 5,15, 7,13, 6,16, 8,14)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,11, 7,13, 6,16, 4, 9)( 2,12, 8,14, 5,15, 3,10)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,11, 4, 9, 2,12, 3,10)( 5,15, 8,14, 6,16, 7,13)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,11, 8,14, 6,16, 3,10)( 2,12, 7,13, 5,15, 4, 9)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 4487] |
| Character table: Data not available. |