Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $542$ | |
| Group : | $C_2^4.C_2^3.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,15)(2,16)(3,6,11,14)(4,5,12,13)(7,9)(8,10), (1,6,9,14)(2,5,10,13)(3,12)(4,11)(7,8)(15,16), (1,8,10,15)(2,7,9,16)(3,14,12,5)(4,13,11,6) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$ x 4, $C_2 \times (C_2^2:C_4)$ x 3 64: $(((C_4 \times C_2): C_2):C_2):C_2$, 16T79, 16T146 128: $C_2 \wr C_2\wr C_2$ x 2, 32T1151 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $C_2^2 \wr C_2$, $C_2 \wr C_2\wr C_2$ x 2
Low degree siblings
16T542 x 31, 16T547 x 32, 32T2693 x 8, 32T2694 x 16, 32T2695 x 8, 32T2696 x 16, 32T2697 x 8, 32T2698 x 16, 32T2699 x 16, 32T2717 x 8, 32T2718 x 8, 32T2719 x 8, 32T6224 x 8, 32T6316 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7,16)( 8,15)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5,13)( 6,14)( 7, 8)(11,12)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 3, 7,11,15)( 4, 8,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 7)( 4, 8)( 5,13)( 6,14)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 8)( 4, 7)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 8,11,16)( 4, 7,12,15)( 5,13)( 6,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,11)( 4,12)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,16)( 8,15)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,10)(11,15)(12,16)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 2)( 3, 7,11,15)( 4, 8,12,16)( 5,14)( 6,13)( 9,10)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 8,11,16)( 4, 7,12,15)( 5, 6)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5,14)( 6,13)( 9,10)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5, 6)( 7,16)( 8,15)( 9,10)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 3)( 2, 4)( 5, 8,13,16)( 6, 7,14,15)( 9,11)(10,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 3)( 2, 4)( 5,16,13, 8)( 6,15,14, 7)( 9,11)(10,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,16, 6,15)( 7,13, 8,14)( 9,11,10,12)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 3, 5, 8, 9,11,13,16)( 2, 4, 6, 7,10,12,14,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 3, 5,16, 9,11,13, 8)( 2, 4, 6,15,10,12,14, 7)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 3, 6, 7)( 2, 4, 5, 8)( 9,11,14,15)(10,12,13,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7, 9,11,14)( 8,10,12,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3,10,12)( 2, 4, 9,11)( 5, 8,14,15)( 6, 7,13,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3,10,12)( 2, 4, 9,11)( 5,16,14, 7)( 6,15,13, 8)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 7,11,15)( 4, 8,12,16)( 9,13)(10,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3, 7)( 4, 8)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3, 8,11,16)( 4, 7,12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3,11)( 4,12)( 7,15)( 8,16)( 9,13)(10,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3, 7,11,15)( 4, 8,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3,11)( 4,12)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 5)( 3,12)( 4,11)( 7,16)( 8,15)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 5747] |
| Character table: Data not available. |