Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $520$ | |
| Group : | $C_4:Q_8.C_2^3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $5$ | |
| Generators: | (1,7,11,14,2,8,12,13)(3,5,9,16,4,6,10,15), (1,16,9,5,2,15,10,6)(3,14,12,7,4,13,11,8), (1,9)(2,10)(3,12)(4,11)(5,15)(6,16)(7,13)(8,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 128: 16T235 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_2^3: C_4$
Low degree siblings
16T520 x 3, 32T2589 x 2, 32T2590 x 4, 32T2591 x 4, 32T2592 x 4, 32T6715 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 7, 6, 8)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5, 7, 6, 8)( 9,10)(11,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 7, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 7, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,10)(11,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5, 9,15, 2, 6,10,16)( 3, 7,12,13, 4, 8,11,14)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5, 9,16, 2, 6,10,15)( 3, 7,12,14, 4, 8,11,13)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5, 9,13, 2, 6,10,14)( 3, 8,12,15, 4, 7,11,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5, 9,14, 2, 6,10,13)( 3, 8,12,16, 4, 7,11,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 3,11, 2,10, 4,12)( 5,13, 8,16, 6,14, 7,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 4,12, 2,10, 3,11)( 5,13, 7,15, 6,14, 8,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 3,11, 2,10, 4,12)( 5,14, 8,15, 6,13, 7,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 4,12, 2,10, 3,11)( 5,14, 7,16, 6,13, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,13, 6,14)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15)( 6,16)( 7,13)( 8,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,13,10, 6, 2,14, 9, 5)( 3,15,11, 7, 4,16,12, 8)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,13, 9, 6, 2,14,10, 5)( 3,15,12, 7, 4,16,11, 8)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,13,12, 6, 2,14,11, 5)( 3,16,10, 8, 4,15, 9, 7)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,13,11, 6, 2,14,12, 5)( 3,16, 9, 8, 4,15,10, 7)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 6579] |
| Character table: Data not available. |