Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $516$ | |
| Group : | $C_2^4.C_2^3.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,11,14,5)(2,12,13,6)(3,9,16,7)(4,10,15,8), (1,16,2,15)(3,13,4,14)(5,6)(9,10), (1,15)(2,16)(3,14)(4,13)(5,12,6,11)(7,9,8,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$ x 4, $C_2 \times (C_2^2:C_4)$ x 3 64: 16T79, 16T101 x 2 128: 32T1350 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $C_2^2 \wr C_2$
Low degree siblings
16T516 x 7, 16T574 x 4, 32T2566 x 8, 32T2567 x 4, 32T2568 x 4, 32T2569 x 4, 32T2570 x 4, 32T2571 x 4, 32T2572 x 4, 32T2831 x 2, 32T2832 x 4, 32T2833 x 2, 32T2834 x 2, 32T7454 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5,11)( 6,12)( 7, 9)( 8,10)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5,11, 6,12)( 7, 9, 8,10)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 3, 4)( 5, 7, 6, 8)( 9,12,10,11)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 3, 4)( 5, 8, 6, 7)( 9,11,10,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 4)( 5, 9, 6,10)( 7,12, 8,11)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5,11, 6,12)( 7, 9, 8,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5, 9)( 6,10)( 7,11)( 8,12)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3)( 2, 4)( 5, 9, 6,10)( 7,11, 8,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,11, 6,12)( 7,10, 8, 9)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,11)( 6,12)( 7,10)( 8, 9)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,16,10,15)(11,14,12,13)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5,13,11)( 2, 6,14,12)( 3, 7,15, 9)( 4, 8,16,10)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5,13,12)( 2, 6,14,11)( 3, 7,15,10)( 4, 8,16, 9)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,13,11,16)(10,14,12,15)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,14,11,15)(10,13,12,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5,15, 9)( 2, 6,16,10)( 3, 8,13,12)( 4, 7,14,11)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5,15,10)( 2, 6,16, 9)( 3, 8,13,11)( 4, 7,14,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,11, 6,12)( 7, 9, 8,10)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5, 9)( 6,10)( 7,12)( 8,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5, 9, 6,10)( 7,12, 8,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,10)( 6, 9)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,15)( 2,16)( 3,13)( 4,14)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,15, 2,16)( 3,13, 4,14)( 5, 9, 6,10)( 7,11, 8,12)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 5715] |
| Character table: Data not available. |