Properties

Label 16T493
Order \(256\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2^2.C_2^5.C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $493$
Group :  $C_2^2.C_2^5.C_2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,9)(2,10)(3,12)(4,11)(5,15)(6,16)(7,14)(8,13), (9,10)(11,12)(13,14)(15,16), (1,2)(5,10)(6,9)(7,12)(8,11)(13,14), (1,5,4,8,2,6,3,7)(9,14,12,16,10,13,11,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 12, $C_2^3$ x 15
16:  $D_4\times C_2$ x 18, $C_2^4$
32:  $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T105
128:  16T245

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$ x 3

Degree 8: $C_2^2 \wr C_2$

Low degree siblings

16T486 x 8, 16T493 x 3, 32T2425 x 4, 32T2426 x 4, 32T2427 x 4, 32T2428 x 8, 32T2429 x 4, 32T2430 x 4, 32T2431 x 4, 32T2464 x 2, 32T2465 x 4, 32T2466 x 2, 32T2467 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 5, 6)( 7, 8)( 9,10)(11,12)$
$ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $4$ $( 5, 7, 6, 8)( 9,11,10,12)$
$ 4, 4, 2, 2, 1, 1, 1, 1 $ $8$ $4$ $( 5, 7, 6, 8)( 9,12,10,11)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 4)( 5, 9)( 6,10)( 7,11)( 8,12)(15,16)$
$ 4, 4, 2, 2, 1, 1, 1, 1 $ $8$ $4$ $( 3, 4)( 5, 9, 6,10)( 7,11, 8,12)(13,14)$
$ 4, 4, 2, 2, 1, 1, 1, 1 $ $8$ $4$ $( 3, 4)( 5,11, 6,12)( 7,10, 8, 9)(15,16)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 4)( 5,11)( 6,12)( 7,10)( 8, 9)(13,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 2, 2, 2, 2 $ $4$ $4$ $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 3)( 2, 4)( 5, 9)( 6,10)( 7,11)( 8,12)(13,16)(14,15)$
$ 4, 4, 2, 2, 2, 2 $ $8$ $4$ $( 1, 3)( 2, 4)( 5, 9, 6,10)( 7,11, 8,12)(13,15)(14,16)$
$ 4, 4, 2, 2, 2, 2 $ $8$ $4$ $( 1, 3)( 2, 4)( 5,11, 6,12)( 7,10, 8, 9)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7,10)( 8, 9)(13,15)(14,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15)(10,16)(11,13)(12,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,16)(10,15)(11,14)(12,13)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,13,12,14)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,16,10,15)(11,14,12,13)$
$ 8, 8 $ $16$ $8$ $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,13,11,16,10,14,12,15)$
$ 8, 8 $ $16$ $8$ $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,14,11,15,10,13,12,16)$
$ 8, 8 $ $16$ $8$ $( 1, 5,13,11, 2, 6,14,12)( 3, 8,15,10, 4, 7,16, 9)$
$ 8, 8 $ $16$ $8$ $( 1, 5,13,12, 2, 6,14,11)( 3, 8,15, 9, 4, 7,16,10)$
$ 8, 8 $ $16$ $8$ $( 1, 5,15,10, 2, 6,16, 9)( 3, 8,14,12, 4, 7,13,11)$
$ 8, 8 $ $16$ $8$ $( 1, 5,15, 9, 2, 6,16,10)( 3, 8,14,11, 4, 7,13,12)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1,13)( 2,14)( 3,15)( 4,16)( 5, 9)( 6,10)( 7,12)( 8,11)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1,13, 2,14)( 3,15, 4,16)( 5, 9, 6,10)( 7,12, 8,11)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1,13)( 2,14)( 3,15)( 4,16)( 5,11)( 6,12)( 7, 9)( 8,10)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1,13, 2,14)( 3,15, 4,16)( 5,11, 6,12)( 7, 9, 8,10)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1,15)( 2,16)( 3,14)( 4,13)( 5, 9)( 6,10)( 7,12)( 8,11)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1,15, 2,16)( 3,14, 4,13)( 5, 9, 6,10)( 7,12, 8,11)$

Group invariants

Order:  $256=2^{8}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [256, 26558]
Character table: Data not available.