Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $486$ | |
| Group : | $C_2^2.C_2^5.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,7,3,6,2,8,4,5)(9,16,11,14,10,15,12,13), (9,10)(11,12)(13,14)(15,16), (1,2)(5,10)(6,9)(7,12)(8,11)(13,14), (1,12,2,11)(3,9,4,10)(5,13,6,14)(7,16,8,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 12, $C_2^3$ x 15 16: $D_4\times C_2$ x 18, $C_2^4$ 32: $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T105 128: 16T245 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $C_2^2 \wr C_2$
Low degree siblings
16T486 x 7, 16T493 x 4, 32T2425 x 4, 32T2426 x 4, 32T2427 x 4, 32T2428 x 8, 32T2429 x 4, 32T2430 x 4, 32T2431 x 4, 32T2464 x 2, 32T2465 x 4, 32T2466 x 2, 32T2467 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5,11)( 6,12)( 7, 9)( 8,10)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5,11, 6,12)( 7, 9, 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 9)( 6,10)( 7,11)( 8,12)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 4)( 5, 9, 6,10)( 7,11, 8,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5,11, 6,12)( 7, 9, 8,10)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3)( 2, 4)( 5,11, 6,12)( 7,10, 8, 9)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7,10)( 8, 9)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 9, 6,10)( 7,12, 8,11)(13,16,14,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,13,11,16,10,14,12,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,14,11,15,10,13,12,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,15,10, 2, 6,16, 9)( 3, 7,14,11, 4, 8,13,12)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,15, 9, 2, 6,16,10)( 3, 7,14,12, 4, 8,13,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,16,10,15)(11,13,12,14)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,13,11, 2, 6,14,12)( 3, 8,15,10, 4, 7,16, 9)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,13,12, 2, 6,14,11)( 3, 8,15, 9, 4, 7,16,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,11, 6,12)( 7, 9, 8,10)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5, 9, 6,10)( 7,11, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 5, 9)( 6,10)( 7,12)( 8,11)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,15, 2,16)( 3,14, 4,13)( 5, 9, 6,10)( 7,12, 8,11)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 26558] |
| Character table: Data not available. |