Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $47$ | |
| Group : | $D_8:C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,13)(2,14)(3,12)(4,11)(5,9)(6,10)(7,15)(8,16), (1,8,6,4,2,7,5,3)(9,16,14,12,10,15,13,11), (1,10,2,9)(3,16,4,15)(5,13,6,14)(7,12,8,11) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T44 x 2, 32T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,11,13,15,10,12,14,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,12,13,16,10,11,14,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,11,13,15,10,12,14,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,12,13,16,10,11,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,15, 4,16)( 5,14, 6,13)( 7,11, 8,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,16, 6,15)( 7,13, 8,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5,16)( 6,15)( 7,13)( 8,14)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 42] |
| Character table: |
2 5 4 5 4 4 4 4 4 5 5 3 3 3 3
1a 2a 2b 8a 8b 8c 8d 4a 4b 4c 2c 4d 4e 2d
2P 1a 1a 1a 4a 4a 4a 4a 2b 2b 2b 1a 2b 2b 1a
3P 1a 2a 2b 8a 8c 8b 8d 4a 4c 4b 2c 4d 4e 2d
5P 1a 2a 2b 8d 8c 8b 8a 4a 4b 4c 2c 4d 4e 2d
7P 1a 2a 2b 8d 8b 8c 8a 4a 4c 4b 2c 4d 4e 2d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 1 -1
X.3 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1
X.4 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1
X.5 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1
X.6 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 1
X.7 1 1 1 -1 -1 -1 -1 1 1 1 1 1 -1 -1
X.8 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
X.9 2 2 2 . . . . -2 -2 -2 . . . .
X.10 2 -2 2 . . . . -2 2 2 . . . .
X.11 2 . -2 A B -B -A . C -C . . . .
X.12 2 . -2 A -B B -A . -C C . . . .
X.13 2 . -2 -A B -B A . -C C . . . .
X.14 2 . -2 -A -B B A . C -C . . . .
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
B = -E(8)+E(8)^3
= -Sqrt(2) = -r2
C = 2*E(4)
= 2*Sqrt(-1) = 2i
|