Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $464$ | |
| Group : | $C_2^4.C_2^4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2)(3,4), (1,6,4,7)(2,5,3,8)(9,16,12,13)(10,15,11,14), (1,12)(2,11)(3,10)(4,9)(5,13)(6,14)(7,15)(8,16), (9,10)(11,12)(13,14)(15,16), (1,2)(5,6)(9,10)(13,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_4$ x 8, $C_2^2$ x 35 8: $D_{4}$ x 8, $C_4\times C_2$ x 28, $C_2^3$ x 15 16: $D_4\times C_2$ x 12, $C_2^2:C_4$ x 16, $C_4\times C_2^2$ x 14, $C_2^4$ 32: $C_2^3 : D_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 12, $C_2^2 \times D_4$ x 2, 32T34 64: 16T68 x 2, 16T87 x 4, 32T262 128: 32T992 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$
Low degree siblings
16T454 x 8, 16T458 x 4, 16T459 x 4, 16T463 x 2, 16T464, 32T2256 x 8, 32T2257 x 8, 32T2273 x 4, 32T2274 x 4, 32T2275 x 8, 32T2276 x 2, 32T2277 x 2, 32T2278 x 4, 32T2279 x 2, 32T2280 x 4, 32T2281 x 2, 32T2298 x 4, 32T2299, 32T2300, 32T2301 x 2, 32T2302 x 2, 32T2303, 32T2304 x 2, 32T2305 x 4, 32T2306 x 4, 32T2307, 32T7268 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,15,11,13)(10,16,12,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,15,12,14)(10,16,11,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,15,12,13)(10,16,11,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,15,11,14)(10,16,12,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 3, 5)( 2, 8, 4, 6)( 9,13,11,15)(10,14,12,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 3, 5)( 2, 8, 4, 6)( 9,13,12,16)(10,14,11,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,13,11,16)(10,14,12,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,13,12,15)(10,14,11,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15)( 6,16)( 7,13)( 8,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15)( 6,16)( 7,14)( 8,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,13, 6,14)( 7,15, 8,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,13, 6,14)( 7,15, 8,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,13, 6,14)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 3,15)( 2,14, 4,16)( 5, 9, 7,11)( 6,10, 8,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 4,16)( 2,14, 3,15)( 5, 9, 7,11)( 6,10, 8,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 3,16)( 2,14, 4,15)( 5, 9, 7,12)( 6,10, 8,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 4,15)( 2,14, 3,16)( 5, 9, 7,12)( 6,10, 8,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,15, 3,13)( 2,16, 4,14)( 5,11, 7, 9)( 6,12, 8,10)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,15, 4,14)( 2,16, 3,13)( 5,11, 7, 9)( 6,12, 8,10)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,15, 4,13)( 2,16, 3,14)( 5,11, 8, 9)( 6,12, 7,10)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,15, 3,14)( 2,16, 4,13)( 5,11, 8, 9)( 6,12, 7,10)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 14764] |
| Character table: Data not available. |