Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $459$ | |
| Group : | $C_2^4.C_2^4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,10)(2,9)(3,11)(4,12)(5,13,6,14)(7,16,8,15), (9,10)(11,12)(13,14)(15,16), (3,4)(7,8)(11,12)(15,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,4,2,3)(5,7,6,8)(11,12)(13,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_4$ x 8, $C_2^2$ x 35 8: $D_{4}$ x 8, $C_4\times C_2$ x 28, $C_2^3$ x 15 16: $D_4\times C_2$ x 12, $C_2^2:C_4$ x 16, $C_4\times C_2^2$ x 14, $C_2^4$ 32: $C_2^3 : D_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 12, $C_2^2 \times D_4$ x 2, 32T34 64: 16T68 x 2, 16T87 x 4, 32T262 128: 32T992 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T454 x 8, 16T458 x 4, 16T459 x 3, 16T463 x 2, 16T464 x 2, 32T2256 x 8, 32T2257 x 8, 32T2273 x 4, 32T2274 x 4, 32T2275 x 8, 32T2276 x 2, 32T2277 x 2, 32T2278 x 4, 32T2279 x 2, 32T2280 x 4, 32T2281 x 2, 32T2298 x 4, 32T2299, 32T2300, 32T2301 x 2, 32T2302 x 2, 32T2303, 32T2304 x 2, 32T2305 x 4, 32T2306 x 4, 32T2307, 32T7268 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 4)( 7, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5, 6)(11,12)(13,14)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 4)( 5, 6)( 9,11,10,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,15,10,16)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13, 6,14)( 7,15, 8,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5,13, 8,16)( 6,14, 7,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14, 6,13)( 7,16, 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5,14, 8,15)( 6,13, 7,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13, 6,14)( 7,16, 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 3,12)( 2,10, 4,11)( 5,13, 8,15)( 6,14, 7,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14, 6,13)( 7,15, 8,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 3,12)( 2,10, 4,11)( 5,14, 8,16)( 6,13, 7,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13, 2,14)( 3,15, 4,16)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 4,16)( 2,14, 3,15)( 5, 9, 7,11)( 6,10, 8,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,10, 6, 9)( 7,12, 8,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 3,15)( 2,14, 4,16)( 5,10, 8,11)( 6, 9, 7,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5, 9)( 6,10)( 7,12)( 8,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 4,15)( 2,14, 3,16)( 5, 9, 7,12)( 6,10, 8,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,10, 6, 9)( 7,11, 8,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 3,16)( 2,14, 4,15)( 5,10, 8,12)( 6, 9, 7,11)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 14764] |
| Character table: Data not available. |