Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $45$ | |
| Group : | $C_8:C_2^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,9)(2,10)(3,12)(4,11)(5,14)(6,13)(7,16)(8,15), (1,4,2,3)(5,16,6,15)(7,11,8,12)(9,14,10,13), (1,11)(2,12)(3,9)(4,10)(5,8)(6,7)(13,15)(14,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
8T15 x 2, 16T35, 16T38 x 2, 32T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7,10)( 8, 9)(11,13)(12,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,15, 6,16)( 7,12, 8,11)( 9,13,10,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5,16, 6,15)( 7,14, 8,13)( 9,11,10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7,16, 9, 2, 8,15,10)( 3,13, 6,12, 4,14, 5,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3,13)( 4,14)( 5,12)( 6,11)( 9,15)(10,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,11,15,14, 2,12,16,13)( 3, 9, 5, 7, 4,10, 6, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5, 8)( 6, 7)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3, 5, 4, 6)( 7,10, 8, 9)(11,14,12,13)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 43] |
| Character table: |
2 5 3 5 3 4 4 3 3 3 3 4
1a 2a 2b 4a 4b 2c 8a 2d 8b 2e 4c
2P 1a 1a 1a 2b 2b 1a 4c 1a 4c 1a 2b
3P 1a 2a 2b 4a 4b 2c 8a 2d 8b 2e 4c
5P 1a 2a 2b 4a 4b 2c 8a 2d 8b 2e 4c
7P 1a 2a 2b 4a 4b 2c 8a 2d 8b 2e 4c
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 -1 1 1
X.3 1 -1 1 -1 1 1 1 -1 1 -1 1
X.4 1 -1 1 1 -1 -1 -1 1 1 -1 1
X.5 1 -1 1 1 -1 -1 1 -1 -1 1 1
X.6 1 1 1 -1 -1 -1 -1 -1 1 1 1
X.7 1 1 1 -1 -1 -1 1 1 -1 -1 1
X.8 1 1 1 1 1 1 -1 -1 -1 -1 1
X.9 2 . 2 . -2 2 . . . . -2
X.10 2 . 2 . 2 -2 . . . . -2
X.11 4 . -4 . . . . . . . .
|