Properties

Label 16T44
Degree $16$
Order $32$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $D_8:C_2$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(16, 44);
 

Group action invariants

Degree $n$:  $16$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $44$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $D_8:C_2$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,7,16,9,2,8,15,10)(3,13,6,12,4,14,5,11), (1,8)(2,7)(3,14)(4,13)(5,11)(6,12)(9,16)(10,15), (1,14,2,13)(3,7,4,8)(5,9,6,10)(11,16,12,15)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$8$:  $D_{4}$ x 2, $C_2^3$
$16$:  $D_4\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 2

Degree 8: $D_4\times C_2$

Low degree siblings

16T44, 16T47, 32T26

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrder IndexRepresentative
1A $1^{16}$ $1$ $1$ $0$ $()$
2A $2^{8}$ $1$ $2$ $8$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
2B $2^{8}$ $2$ $2$ $8$ $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,11)( 8,12)( 9,13)(10,14)$
2C $2^{6},1^{4}$ $4$ $2$ $6$ $( 5, 6)( 7,10)( 8, 9)(11,13)(12,14)(15,16)$
2D $2^{8}$ $4$ $2$ $8$ $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)$
4A1 $4^{4}$ $1$ $4$ $12$ $( 1, 4, 2, 3)( 5,15, 6,16)( 7,14, 8,13)( 9,11,10,12)$
4A-1 $4^{4}$ $1$ $4$ $12$ $( 1, 3, 2, 4)( 5,16, 6,15)( 7,13, 8,14)( 9,12,10,11)$
4B $4^{4}$ $2$ $4$ $12$ $( 1,16, 2,15)( 3, 6, 4, 5)( 7, 9, 8,10)(11,13,12,14)$
4C $4^{4}$ $4$ $4$ $12$ $( 1, 6, 2, 5)( 3,15, 4,16)( 7,13, 8,14)( 9,11,10,12)$
4D $4^{4}$ $4$ $4$ $12$ $( 1,13, 2,14)( 3, 8, 4, 7)( 5,10, 6, 9)(11,15,12,16)$
8A1 $8^{2}$ $2$ $8$ $14$ $( 1,12,16,14, 2,11,15,13)( 3,10, 6, 7, 4, 9, 5, 8)$
8A-1 $8^{2}$ $2$ $8$ $14$ $( 1, 9,15, 7, 2,10,16, 8)( 3,12, 5,13, 4,11, 6,14)$
8B1 $8^{2}$ $2$ $8$ $14$ $( 1,11,16,13, 2,12,15,14)( 3, 9, 6, 8, 4,10, 5, 7)$
8B3 $8^{2}$ $2$ $8$ $14$ $( 1, 7,16, 9, 2, 8,15,10)( 3,13, 6,12, 4,14, 5,11)$

Malle's constant $a(G)$:     $1/6$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $32=2^{5}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  $3$
Label:  32.42
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 2D 4A1 4A-1 4B 4C 4D 8A1 8A-1 8B1 8B3
Size 1 1 2 4 4 1 1 2 4 4 2 2 2 2
2 P 1A 1A 1A 1A 1A 2A 2A 2A 2A 2A 4B 4B 4B 4B
Type
32.42.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1e R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1f R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1g R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1h R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.2a R 2 2 2 0 0 2 2 2 0 0 0 0 0 0
32.42.2b R 2 2 2 0 0 2 2 2 0 0 0 0 0 0
32.42.2c1 C 2 2 0 0 0 2ζ82 2ζ82 0 0 0 ζ81ζ8 ζ81+ζ8 ζ8ζ83 ζ8+ζ83
32.42.2c2 C 2 2 0 0 0 2ζ82 2ζ82 0 0 0 ζ81ζ8 ζ81+ζ8 ζ8+ζ83 ζ8ζ83
32.42.2c3 C 2 2 0 0 0 2ζ82 2ζ82 0 0 0 ζ81+ζ8 ζ81ζ8 ζ8+ζ83 ζ8ζ83
32.42.2c4 C 2 2 0 0 0 2ζ82 2ζ82 0 0 0 ζ81+ζ8 ζ81ζ8 ζ8ζ83 ζ8+ζ83

magma: CharacterTable(G);