Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $44$ | |
| Group : | $D_8:C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,7,16,9,2,8,15,10)(3,13,6,12,4,14,5,11), (1,8)(2,7)(3,14)(4,13)(5,11)(6,12)(9,16)(10,15), (1,14,2,13)(3,7,4,8)(5,9,6,10)(11,16,12,15) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T44, 16T47, 32T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7,10)( 8, 9)(11,13)(12,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,15, 6,16)( 7,11, 8,12)( 9,14,10,13)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5,16, 6,15)( 7,13, 8,14)( 9,12,10,11)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5,15, 6,16)( 7,14, 8,13)( 9,11,10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 7,16, 9, 2, 8,15,10)( 3,13, 6,12, 4,14, 5,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3,13)( 4,14)( 5,12)( 6,11)( 9,15)(10,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 8,16,10, 2, 7,15, 9)( 3,14, 6,11, 4,13, 5,12)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,11,16,13, 2,12,15,14)( 3, 9, 6, 8, 4,10, 5, 7)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5, 8, 6, 7)(13,16,14,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,12,16,14, 2,11,15,13)( 3,10, 6, 7, 4, 9, 5, 8)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3, 5, 4, 6)( 7,10, 8, 9)(11,14,12,13)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 42] |
| Character table: |
2 5 3 5 3 5 5 4 4 3 4 4 3 4 4
1a 2a 2b 4a 4b 4c 2c 8a 2d 8b 8c 4d 8d 4e
2P 1a 1a 1a 2b 2b 2b 1a 4e 1a 4e 4e 2b 4e 2b
3P 1a 2a 2b 4a 4c 4b 2c 8b 2d 8a 8c 4d 8d 4e
5P 1a 2a 2b 4a 4b 4c 2c 8b 2d 8a 8d 4d 8c 4e
7P 1a 2a 2b 4a 4c 4b 2c 8a 2d 8b 8d 4d 8c 4e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 1 -1 1 -1 -1 1 -1 1
X.3 1 -1 1 -1 1 1 1 1 -1 1 1 -1 1 1
X.4 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1
X.5 1 -1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 1
X.6 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.7 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1
X.8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1
X.9 2 . 2 . -2 -2 2 . . . . . . -2
X.10 2 . 2 . 2 2 -2 . . . . . . -2
X.11 2 . -2 . A -A . B . -B C . -C .
X.12 2 . -2 . A -A . -B . B -C . C .
X.13 2 . -2 . -A A . B . -B -C . C .
X.14 2 . -2 . -A A . -B . B C . -C .
A = -2*E(4)
= -2*Sqrt(-1) = -2i
B = -E(8)+E(8)^3
= -Sqrt(2) = -r2
C = E(8)+E(8)^3
= Sqrt(-2) = i2
|