Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $406$ | |
| Group : | $C_4^2:C_2^2.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,6,2,5)(3,8,4,7)(9,15,10,16)(11,13,12,14), (1,4,2,3)(5,8,6,7)(9,11,10,12)(13,15,14,16), (1,10,3,12,2,9,4,11)(5,14,7,15,6,13,8,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 12, $C_2^3$ 16: $D_4\times C_2$ x 6, $Q_8:C_2$ 32: $C_2^2 \wr C_2$ x 3, 16T34 x 3, $C_4^2:C_2$ 64: 32T320 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T382 x 8, 16T406, 32T863 x 4, 32T864 x 4, 32T865 x 4, 32T901 x 2, 32T902, 32T903 x 2, 32T904Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 3,11, 2,10, 4,12)( 5,13, 7,16, 6,14, 8,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 3,11, 2,10, 4,12)( 5,13, 8,15, 6,14, 7,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 4,12, 2,10, 3,11)( 5,13, 7,16, 6,14, 8,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 4,12, 2,10, 3,11)( 5,13, 8,15, 6,14, 7,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5, 9, 6,10)( 7,11, 8,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5, 9, 6,10)( 7,11, 8,12)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 742] |
| Character table: Data not available. |