Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $394$ | |
| Group : | $C_2.C_2\wr C_2^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,11,5,13)(2,12,6,14)(3,9,8,15)(4,10,7,16), (1,8,2,7)(3,5,4,6)(9,12)(10,11)(13,15)(14,16), (1,11,6,14,2,12,5,13)(3,10,7,15,4,9,8,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T342 x 2, 16T365 x 4, 16T381, 16T386, 16T394, 32T782 x 2, 32T783 x 2, 32T784 x 2, 32T833 x 2, 32T834 x 4, 32T835 x 2, 32T862, 32T871 x 2, 32T881 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15,10,16)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,15,10,16)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15)( 6,16)( 7,14)( 8,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,11, 6,14)( 2,12, 5,13)( 3, 9, 7,16)( 4,10, 8,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,11, 5,13, 2,12, 6,14)( 3,10, 8,16, 4, 9, 7,15)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 931] |
| Character table: |
2 7 6 5 4 7 4 4 4 4 4 5 5 4 4 3 3 3
1a 2a 2b 2c 2d 4a 2e 4b 4c 4d 2f 4e 2g 4f 4g 4h 8a
2P 1a 1a 1a 1a 1a 2a 1a 2d 2a 2a 1a 2d 1a 2d 2b 2f 4e
3P 1a 2a 2b 2c 2d 4a 2e 4b 4c 4d 2f 4e 2g 4f 4g 4h 8a
5P 1a 2a 2b 2c 2d 4a 2e 4b 4c 4d 2f 4e 2g 4f 4g 4h 8a
7P 1a 2a 2b 2c 2d 4a 2e 4b 4c 4d 2f 4e 2g 4f 4g 4h 8a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1
X.3 1 1 1 -1 1 -1 -1 1 1 -1 1 1 1 1 -1 -1 1
X.4 1 1 1 -1 1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 1
X.5 1 1 1 -1 1 1 1 -1 -1 -1 1 1 1 1 -1 1 -1
X.6 1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1
X.7 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1
X.8 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X.9 2 2 2 -2 2 . . . . 2 -2 -2 . . . . .
X.10 2 2 2 2 2 . . . . -2 -2 -2 . . . . .
X.11 2 2 -2 . 2 -2 2 . . . 2 -2 . . . . .
X.12 2 2 -2 . 2 . . -2 2 . -2 2 . . . . .
X.13 2 2 -2 . 2 . . 2 -2 . -2 2 . . . . .
X.14 2 2 -2 . 2 2 -2 . . . 2 -2 . . . . .
X.15 4 -4 . . 4 . . . . . . . -2 2 . . .
X.16 4 -4 . . 4 . . . . . . . 2 -2 . . .
X.17 8 . . . -8 . . . . . . . . . . . .
|