Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $39$ | |
| Group : | $C_2^2\wr C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,9,16,8)(2,10,15,7)(3,11,6,14)(4,12,5,13), (1,7,5,11)(2,8,6,12)(3,13,15,9)(4,14,16,10), (1,2)(3,4)(5,6)(7,9)(8,10)(11,13)(12,14)(15,16) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 6
Degree 8: $D_4$, $D_4\times C_2$ x 2, $C_2^2 \wr C_2$ x 4
Low degree siblings
8T18 x 8, 16T39 x 5, 16T46, 32T24Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13)( 8,14)( 9,11)(10,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,10)( 8, 9)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7, 9)( 8,10)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3,13)( 4,14)( 5,11)( 6,12)( 9,15)(10,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 5,11)( 2, 8, 6,12)( 3,13,15, 9)( 4,14,16,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 4,13)( 2, 7, 3,14)( 5,12,16, 9)( 6,11,15,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8,16, 9)( 2, 7,15,10)( 3,14, 6,11)( 4,13, 5,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,16)( 2,15)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 27] |
| Character table: |
2 5 4 4 4 4 4 5 5 4 3 3 3 3 5
1a 2a 2b 2c 2d 2e 2f 2g 2h 2i 4a 4b 4c 2j
2P 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 2g 2f 2j 1a
3P 1a 2a 2b 2c 2d 2e 2f 2g 2h 2i 4a 4b 4c 2j
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 -1 1 1 1 -1 1 -1 1 1
X.3 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1
X.4 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1
X.5 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 1
X.6 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1
X.7 1 1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 1
X.8 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1
X.9 2 2 . . . -2 -2 2 . . . . . -2
X.10 2 -2 . . . 2 -2 2 . . . . . -2
X.11 2 . -2 . 2 . -2 -2 . . . . . 2
X.12 2 . . -2 . . 2 -2 2 . . . . -2
X.13 2 . . 2 . . 2 -2 -2 . . . . -2
X.14 2 . 2 . -2 . -2 -2 . . . . . 2
|