Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $385$ | |
| Group : | $C_4.C_2^2\wr C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,8,11,16,4,5,10,13,2,7,12,15,3,6,9,14), (1,3,2,4)(5,7,6,8)(9,11,10,12)(13,16,14,15), (1,10,2,9)(3,12,4,11)(5,8)(6,7)(15,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_{8}$ x 2, $D_4\times C_2$ x 3 32: $Z_8 : Z_8^\times$, $C_2^2 \wr C_2$, 16T29 64: 16T126 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $D_{8}$
Low degree siblings
16T385, 32T868, 32T869, 32T870, 32T1523 x 2, 32T1937Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 3, 4)( 5,15, 6,16)( 7,13, 8,14)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 5,11,14, 4, 7,10,16, 2, 6,12,13, 3, 8, 9,15)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 5,11,13, 4, 7,10,15, 2, 6,12,14, 3, 8, 9,16)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 7,11,15, 4, 6,10,14, 2, 8,12,16, 3, 5, 9,13)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 7,11,16, 4, 6,10,13, 2, 8,12,15, 3, 5, 9,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 3,12, 2,10, 4,11)( 5,15, 8,13, 6,16, 7,14)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 4,11, 2,10, 3,12)( 5,15, 7,14, 6,16, 8,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 3,12, 2,10, 4,11)( 5,16, 8,14, 6,15, 7,13)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 922] |
| Character table: |
2 7 5 6 3 3 7 5 6 6 4 4 4 4 4 4 4 4 5 4 5
1a 2a 2b 2c 4a 2d 4b 4c 4d 2e 2f 4e 4f 16a 16b 16c 16d 8a 8b 8c
2P 1a 1a 1a 1a 2b 1a 2d 2d 2d 1a 1a 2d 2d 8a 8c 8c 8a 4d 4d 4d
3P 1a 2a 2b 2c 4a 2d 4b 4c 4d 2e 2f 4e 4f 16d 16c 16b 16a 8a 8b 8c
5P 1a 2a 2b 2c 4a 2d 4b 4c 4d 2e 2f 4e 4f 16d 16c 16b 16a 8a 8b 8c
7P 1a 2a 2b 2c 4a 2d 4b 4c 4d 2e 2f 4e 4f 16a 16b 16c 16d 8a 8b 8c
11P 1a 2a 2b 2c 4a 2d 4b 4c 4d 2e 2f 4e 4f 16d 16c 16b 16a 8a 8b 8c
13P 1a 2a 2b 2c 4a 2d 4b 4c 4d 2e 2f 4e 4f 16d 16c 16b 16a 8a 8b 8c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1
X.3 1 -1 1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1
X.4 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1
X.5 1 -1 1 1 -1 1 -1 1 1 1 -1 1 -1 -1 1 1 -1 1 -1 1
X.6 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1
X.7 1 1 1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1
X.8 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1
X.9 2 -2 2 . . 2 -2 2 2 . . . . . . . . -2 2 -2
X.10 2 2 2 . . 2 2 2 2 . . . . . . . . -2 -2 -2
X.11 2 . -2 . . 2 . -2 2 -2 . 2 . . . . . -2 . 2
X.12 2 . -2 . . 2 . -2 2 . -2 . 2 . . . . 2 . -2
X.13 2 . -2 . . 2 . -2 2 . 2 . -2 . . . . 2 . -2
X.14 2 . -2 . . 2 . -2 2 2 . -2 . . . . . -2 . 2
X.15 2 -2 2 . . 2 2 -2 -2 . . . . A -A A -A . . .
X.16 2 -2 2 . . 2 2 -2 -2 . . . . -A A -A A . . .
X.17 2 2 2 . . 2 -2 -2 -2 . . . . A A -A -A . . .
X.18 2 2 2 . . 2 -2 -2 -2 . . . . -A -A A A . . .
X.19 4 . -4 . . 4 . 4 -4 . . . . . . . . . . .
X.20 8 . . . . -8 . . . . . . . . . . . . . .
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|