Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $376$ | |
| Group : | $D_4^2.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (3,4)(7,15)(8,16)(11,12), (1,5)(2,6)(3,4)(7,8)(9,13)(10,14)(11,12)(15,16), (1,3,6,15)(2,4,5,16)(7,9,11,14)(8,10,12,13) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $C_2^2 \wr C_2$, $C_2 \wr C_2\wr C_2$ x 2
Low degree siblings
8T35 x 8, 16T376 x 3, 16T388 x 4, 16T390 x 4, 16T391 x 4, 16T393 x 4, 16T395 x 4, 16T396 x 4, 16T401 x 4, 32T852 x 4, 32T853 x 2, 32T854 x 2, 32T872 x 2, 32T876 x 4, 32T877 x 2, 32T880 x 2, 32T882 x 2, 32T883 x 4, 32T884 x 2, 32T885 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7,15)( 8,16)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 7)( 4, 8)( 5,14)( 6,13)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 8,12,15)( 4, 7,11,16)( 5,14)( 6,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,10)(11,15)(12,16)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 8,12,15)( 4, 7,11,16)( 5, 6)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 3, 2, 4)( 5, 7,13,15)( 6, 8,14,16)( 9,11,10,12)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 3, 5,16,10,12,14, 7)( 2, 4, 6,15, 9,11,13, 8)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7, 9,11,14)( 8,10,12,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3,10,12)( 2, 4, 9,11)( 5, 7,14,16)( 6, 8,13,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 8)( 4, 7)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3,11)( 4,12)( 7,15)( 8,16)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3,11)( 4,12)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 928] |
| Character table: |
2 7 5 4 4 6 5 5 5 5 4 3 3 3 4 5 4 5 5 5 7
1a 2a 2b 4a 2c 2d 2e 4b 2f 2g 4c 8a 4d 4e 4f 4g 2h 2i 4h 2j
2P 1a 1a 1a 2c 1a 1a 1a 2c 1a 1a 2d 4f 2i 2j 2j 2c 1a 1a 2c 1a
3P 1a 2a 2b 4a 2c 2d 2e 4b 2f 2g 4c 8a 4d 4e 4f 4g 2h 2i 4h 2j
5P 1a 2a 2b 4a 2c 2d 2e 4b 2f 2g 4c 8a 4d 4e 4f 4g 2h 2i 4h 2j
7P 1a 2a 2b 4a 2c 2d 2e 4b 2f 2g 4c 8a 4d 4e 4f 4g 2h 2i 4h 2j
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1
X.3 1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 1 -1 1 1 -1 1
X.4 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 1
X.5 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 1
X.6 1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 1
X.7 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 1 -1 1
X.8 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1
X.9 2 2 . . 2 2 . . 2 . . . . . -2 -2 . -2 . 2
X.10 2 -2 . . 2 2 . . -2 . . . . . -2 2 . -2 . 2
X.11 2 . . -2 2 -2 2 . . . . . . . -2 . 2 2 . 2
X.12 2 . . 2 2 -2 -2 . . . . . . . -2 . -2 2 . 2
X.13 2 . -2 . 2 -2 . 2 . . . . . . 2 . . -2 2 2
X.14 2 . 2 . 2 -2 . -2 . . . . . . 2 . . -2 -2 2
X.15 4 . . . -4 . . . . -2 . . . 2 . . . . . 4
X.16 4 . . . -4 . . . . 2 . . . -2 . . . . . 4
X.17 4 -2 . . . . -2 2 2 . . . . . . . 2 . -2 -4
X.18 4 -2 . . . . 2 -2 2 . . . . . . . -2 . 2 -4
X.19 4 2 . . . . -2 -2 -2 . . . . . . . 2 . 2 -4
X.20 4 2 . . . . 2 2 -2 . . . . . . . -2 . -2 -4
|