Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $373$ | |
| Group : | $C_2^4.C_2^3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,7,2,8)(3,13,4,14)(5,11,6,12)(9,15,10,16), (1,7)(2,8)(3,14,11,5)(4,13,12,6)(9,15)(10,16), (1,3,10,12)(2,4,9,11)(5,15,6,16)(7,13,8,14) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 12, $C_2^3$ 16: $D_4\times C_2$ x 6, $Q_8:C_2$ 32: $C_2^2 \wr C_2$ x 3, 16T34 x 3, $C_4^2:C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 32T320 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2
Low degree siblings
16T350 x 4, 16T364 x 4, 16T373 x 7, 16T392 x 16, 32T801 x 8, 32T802 x 4, 32T803 x 2, 32T804, 32T830, 32T831 x 4, 32T832 x 8, 32T845 x 4, 32T846 x 2, 32T878 x 4, 32T879 x 4, 32T1554, 32T1709 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7,16)( 8,15)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5,14)( 6,13)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,11)( 4,12)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,11)( 4,12)( 5,14)( 6,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,16)( 8,15)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5, 6)( 7,16)( 8,15)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,13)( 6,14)( 7, 8)( 9,10)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7,13,16)( 6, 8,14,15)( 9,11,10,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,15,13, 8)( 6,16,14, 7)( 9,11,10,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 9,11)( 2, 4,10,12)( 5, 7,14,15)( 6, 8,13,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 7,11,15)( 4, 8,12,16)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3, 8,11,16)( 4, 7,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 6)( 2, 5)( 3, 8,11,16)( 4, 7,12,15)( 9,13)(10,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 7, 9,15)( 2, 8,10,16)( 3, 5)( 4, 6)(11,14)(12,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7,10,16)( 2, 8, 9,15)( 3, 6,12,14)( 4, 5,11,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 7)( 2, 8)( 3,14,11, 5)( 4,13,12, 6)( 9,15)(10,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 753] |
| Character table: Data not available. |