Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $330$ | |
| Group : | $C_2^4.D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,4,6,7,9,11,14,15)(2,3,5,8,10,12,13,16), (1,4,2,3)(5,16,13,8)(6,15,14,7)(9,11,10,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $D_{8}$, $QD_{16}$, $C_2^2:C_4$ 32: $C_4\wr C_2$, $C_2^3 : C_4 $, 16T26 64: $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T163 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $QD_{16}$, $(((C_4 \times C_2): C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T330 x 3, 16T339 x 4, 32T750, 32T751 x 2, 32T752 x 2, 32T776, 32T1574, 32T1576, 32T1682 x 2, 32T1751 x 2, 32T1790Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 8)( 4, 7)( 5, 6)(11,15)(12,16)(13,14)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 8,11,15)( 4, 7,12,16)( 5,13)( 6,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,11)( 4,12)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 2)( 3, 7,11,16)( 4, 8,12,15)( 5,14)( 6,13)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5, 6)( 7,15)( 8,16)( 9,10)(13,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 8,13,16)( 6, 7,14,15)( 9,12,10,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,15,13, 7)( 6,16,14, 8)( 9,12,10,11)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 6, 8, 9,12,14,16)( 2, 4, 5, 7,10,11,13,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 6,15, 9,12,14, 7)( 2, 4, 5,16,10,11,13, 8)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 9,12)( 2, 4,10,11)( 5, 8, 6, 7)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 9,12)( 2, 4,10,11)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 4, 6, 7, 9,11,14,15)( 2, 3, 5, 8,10,12,13,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 4, 6,16, 9,11,14, 8)( 2, 3, 5,15,10,12,13, 7)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3, 7,12,15)( 4, 8,11,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3,11)( 4,12)( 7,15)( 8,16)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3,16,12, 8)( 4,15,11, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 75] |
| Character table: Data not available. |