Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $33$ | |
| Group : | $C_2^2.D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,11,6,8)(2,12,5,7)(3,10,16,13)(4,9,15,14), (1,9,3,7)(2,10,4,8)(5,13,15,11)(6,14,16,12) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$, $C_2^3 : C_4 $, $C_2^3: C_4$
Low degree siblings
8T19 x 2, 8T20, 8T21, 16T33, 16T52, 16T53, 32T19Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3,15)( 4,16)( 5, 6)( 7,10,12,13)( 8, 9,11,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3,15)( 4,16)( 5, 6)( 7,13,12,10)( 8,14,11, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7, 9)( 8,10)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 3, 9)( 2, 8, 4,10)( 5,11,15,13)( 6,12,16,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7,16,14)( 2, 8,15,13)( 3, 9, 6,12)( 4,10, 5,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 8)( 2, 7)( 3,13)( 4,14)( 5,12)( 6,11)( 9,15)(10,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 6,11)( 2, 7, 5,12)( 3,13,16,10)( 4,14,15, 9)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 6] |
| Character table: |
2 5 4 3 3 4 4 5 3 3 3 3
1a 2a 4a 4b 2b 2c 2d 4c 4d 2e 4e
2P 1a 1a 2a 2a 1a 1a 1a 2b 2b 1a 2d
3P 1a 2a 4b 4a 2b 2c 2d 4d 4c 2e 4e
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 -1 -1 1 1
X.3 1 1 -1 -1 1 1 1 1 1 -1 -1
X.4 1 1 1 1 1 1 1 -1 -1 -1 -1
X.5 1 -1 A -A -1 1 1 A -A -1 1
X.6 1 -1 -A A -1 1 1 -A A -1 1
X.7 1 -1 A -A -1 1 1 -A A 1 -1
X.8 1 -1 -A A -1 1 1 A -A 1 -1
X.9 2 2 . . -2 -2 2 . . . .
X.10 2 -2 . . 2 -2 2 . . . .
X.11 4 . . . . . -4 . . . .
A = -E(4)
= -Sqrt(-1) = -i
|