Properties

Label 16T329
Order \(128\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2^4.C_2^3$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $329$
Group :  $C_2^4.C_2^3$
Parity:  $1$
Primitive:  No
Nilpotency class:  $3$
Generators:  (9,10)(11,12)(13,14)(15,16), (3,4)(7,8)(11,12)(15,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,10)(2,9)(3,11)(4,12)(5,15,6,16)(7,14,8,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 12, $C_2^3$ x 15
16:  $D_4\times C_2$ x 18, $C_2^4$
32:  $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3
64:  16T105

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 2

Degree 8: $D_4$

Low degree siblings

16T241, 16T277 x 2, 16T301, 16T309 x 6, 16T320 x 3, 16T329 x 2, 32T547 x 3, 32T548 x 3, 32T549, 32T643 x 4, 32T644 x 6, 32T698 x 6, 32T716 x 6, 32T717 x 6, 32T749 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 5, 6)( 7, 8)(13,14)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 5, 6)( 7, 8)( 9,10)(11,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $( 3, 4)( 7, 8)(11,12)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $( 3, 4)( 7, 8)( 9,10)(13,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,16)(12,15)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13)(10,14)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,14)(10,13)(11,15)(12,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,16,12,15)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,15,12,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15)( 6,16)( 7,13)( 8,14)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 9, 2,10)( 3,11, 4,12)( 5,15, 6,16)( 7,13, 8,14)$
$ 4, 4, 2, 2, 2, 2 $ $8$ $4$ $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15, 6,16)( 7,14, 8,13)$
$ 4, 4, 2, 2, 2, 2 $ $8$ $4$ $( 1, 9, 2,10)( 3,12, 4,11)( 5,15)( 6,16)( 7,14)( 8,13)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1,13, 3,15)( 2,14, 4,16)( 5,11, 7, 9)( 6,12, 8,10)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1,13, 4,16)( 2,14, 3,15)( 5,11, 8,10)( 6,12, 7, 9)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1,13, 3,16)( 2,14, 4,15)( 5,11, 8, 9)( 6,12, 7,10)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1,13, 4,15)( 2,14, 3,16)( 5,11, 7,10)( 6,12, 8, 9)$

Group invariants

Order:  $128=2^{7}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [128, 1758]
Character table: Data not available.