Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $322$ | |
| Group : | $(C_2\times D_4).C_2^3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,4,2,3)(9,12,10,11), (1,5,11,14)(2,6,12,13)(3,7,9,15)(4,8,10,16), (1,14,11,6)(2,13,12,5)(3,15,9,8)(4,16,10,7) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ 64: 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$
Low degree siblings
16T293 x 4, 16T322, 32T678 x 2, 32T679 x 2, 32T680 x 2, 32T738, 32T739, 32T1138 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 7, 6, 8)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 7, 6, 8)( 9,10)(11,12)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 8, 6, 7)( 9,10)(11,12)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,10)(11,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 9,15)( 2, 6,10,16)( 3, 7,12,13)( 4, 8,11,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 9,16)( 2, 6,10,15)( 3, 7,12,14)( 4, 8,11,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5,11,14)( 2, 6,12,13)( 3, 7, 9,15)( 4, 8,10,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5,11,13)( 2, 6,12,14)( 3, 7, 9,16)( 4, 8,10,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,13, 6,14)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15)( 6,16)( 7,13)( 8,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,13, 6,14)( 7,16, 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13,11, 5)( 2,14,12, 6)( 3,16, 9, 7)( 4,15,10, 8)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13,12, 5)( 2,14,11, 6)( 3,16,10, 7)( 4,15, 9, 8)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13,10, 8)( 2,14, 9, 7)( 3,16,11, 5)( 4,15,12, 6)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 9, 8)( 2,14,10, 7)( 3,16,12, 5)( 4,15,11, 6)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 858] |
| Character table: Data not available. |