Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $32$ | |
| Group : | $SD_{16}:C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,15)(2,16)(3,5)(4,6)(7,8)(13,14), (1,14,15,12,2,13,16,11)(3,8,5,9,4,7,6,10), (1,6)(2,5)(3,15)(4,16)(7,12)(8,11)(9,14)(10,13) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T50, 32T18Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7,10)( 8, 9)(11,13)(12,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,15, 6,16)( 7,11, 8,12)( 9,14,10,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5,16, 6,15)( 7,13, 8,14)( 9,12,10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3,14, 4,13)( 5,11, 6,12)( 9,16,10,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7,15,10, 2, 8,16, 9)( 3,14, 5,12, 4,13, 6,11)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5, 7, 6, 8)(13,16,14,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,11,16,13, 2,12,15,14)( 3,10, 6, 7, 4, 9, 5, 8)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3, 5, 4, 6)( 7,10, 8, 9)(11,14,12,13)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 44] |
| Character table: |
2 5 3 5 3 4 4 3 3 3 3 4
1a 2a 2b 4a 4b 2c 4c 8a 4d 8b 4e
2P 1a 1a 1a 2b 2b 1a 2b 4e 2b 4e 2b
3P 1a 2a 2b 4a 4b 2c 4c 8a 4d 8b 4e
5P 1a 2a 2b 4a 4b 2c 4c 8a 4d 8b 4e
7P 1a 2a 2b 4a 4b 2c 4c 8a 4d 8b 4e
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 -1 1 1
X.3 1 -1 1 -1 1 1 1 -1 1 -1 1
X.4 1 -1 1 1 -1 -1 -1 1 1 -1 1
X.5 1 -1 1 1 -1 -1 1 -1 -1 1 1
X.6 1 1 1 -1 -1 -1 -1 -1 1 1 1
X.7 1 1 1 -1 -1 -1 1 1 -1 -1 1
X.8 1 1 1 1 1 1 -1 -1 -1 -1 1
X.9 2 . 2 . -2 2 . . . . -2
X.10 2 . 2 . 2 -2 . . . . -2
X.11 4 . -4 . . . . . . . .
|