Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $317$ | |
| Group : | $C_2^4:C_2^2.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,4,2,3)(5,7,6,8)(9,11,10,12)(13,15,14,16), (1,15,5,9)(2,16,6,10)(3,14,8,12)(4,13,7,11), (1,6,2,5)(3,8,4,7)(9,15)(10,16)(11,14)(12,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ 64: 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$
Low degree siblings
16T219, 16T236, 16T266, 16T287, 16T319 x 2, 16T324, 32T482, 32T483, 32T484, 32T530, 32T531, 32T614, 32T615, 32T616, 32T617, 32T663, 32T664, 32T731 x 2, 32T733 x 2, 32T734 x 2, 32T743Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15,10,16)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,13,10,14)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 5,15, 2,10, 6,16)( 3,11, 8,13, 4,12, 7,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 5,15)( 2,10, 6,16)( 3,12, 8,14)( 4,11, 7,13)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,11, 6,14, 2,12, 5,13)( 3, 9, 7,16, 4,10, 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,11, 5,13)( 2,12, 6,14)( 3,10, 8,16)( 4, 9, 7,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,13, 6,12, 2,14, 5,11)( 3,15, 7,10, 4,16, 8, 9)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 6,12)( 2,14, 5,11)( 3,16, 7, 9)( 4,15, 8,10)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,15, 6,10, 2,16, 5, 9)( 3,13, 7,12, 4,14, 8,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,15, 5, 9)( 2,16, 6,10)( 3,14, 8,12)( 4,13, 7,11)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 853] |
| Character table: Data not available. |