Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $31$ | |
| Group : | $C_2^2:Q_8$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,8,16,10)(2,7,15,9)(3,14,5,12)(4,13,6,11), (1,6,2,5)(3,16,4,15)(7,11,8,12)(9,13,10,14), (1,2)(3,4)(5,6)(7,9)(8,10)(11,13)(12,14)(15,16) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$, $Q_8$ x 2 16: $D_4\times C_2$, $Q_8:C_2$, $D_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $Q_8$, $D_4\times C_2$, $Q_8:C_2$
Low degree siblings
16T31, 32T17Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,10)( 8, 9)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5,15, 6,16)( 7,11, 8,12)( 9,13,10,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5,15, 6,16)( 7,14, 8,13)( 9,12,10,11)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 2, 3)( 5,16, 6,15)( 7,12, 8,11)( 9,14,10,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3,15, 4,16)( 7,12, 8,11)( 9,14,10,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3,13, 4,14)( 5,11, 6,12)( 9,15,10,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7,16, 9)( 2, 8,15,10)( 3,13, 5,11)( 4,14, 6,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11,16,13)( 2,12,15,14)( 3,10, 5, 8)( 4, 9, 6, 7)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5, 8, 6, 7)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,15)( 2,16)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,16)( 2,15)( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,13)(12,14)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 29] |
| Character table: |
2 5 4 5 4 4 4 4 4 3 3 3 3 5 5
1a 2a 2b 2c 4a 4b 4c 4d 4e 4f 4g 4h 2d 2e
2P 1a 1a 1a 1a 2b 2b 2b 2b 2b 2e 2e 2b 1a 1a
3P 1a 2a 2b 2c 4c 4b 4a 4d 4e 4f 4g 4h 2d 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1
X.3 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 1
X.4 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1
X.5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1
X.6 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.7 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
X.8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1
X.9 2 2 -2 -2 . . . . . . . . 2 -2
X.10 2 -2 -2 2 . . . . . . . . 2 -2
X.11 2 . 2 . . -2 . 2 . . . . -2 -2
X.12 2 . 2 . . 2 . -2 . . . . -2 -2
X.13 2 . -2 . A . -A . . . . . -2 2
X.14 2 . -2 . -A . A . . . . . -2 2
A = -2*E(4)
= -2*Sqrt(-1) = -2i
|