Show commands: Magma
Group invariants
| Abstract group: | $C_2^2:Q_8$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $2$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $31$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $8$ |
| |
| Generators: | $(1,8,16,10)(2,7,15,9)(3,14,5,12)(4,13,6,11)$, $(1,6,2,5)(3,16,4,15)(7,11,8,12)(9,13,10,14)$, $(1,2)(3,4)(5,6)(7,9)(8,10)(11,13)(12,14)(15,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$, $Q_8$ x 2 $16$: $D_4\times C_2$, $Q_8:C_2$, $Q_8\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $Q_8$, $D_4\times C_2$, $Q_8:C_2$
Low degree siblings
16T31, 32T17Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,15)( 2,16)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)$ |
| 2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,16)( 2,15)( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,13)(12,14)$ |
| 2D | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 7,10)( 8, 9)(11,14)(12,13)$ |
| 2E | $2^{8}$ | $2$ | $2$ | $8$ | $( 1,16)( 2,15)( 3, 5)( 4, 6)( 7, 8)( 9,10)(11,12)(13,14)$ |
| 4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3,16, 4,15)( 7,11, 8,12)( 9,13,10,14)$ |
| 4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5,16, 6,15)( 7,13, 8,14)( 9,11,10,12)$ |
| 4C1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3,16, 4,15)( 7,14, 8,13)( 9,12,10,11)$ |
| 4C-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3,15, 4,16)( 7,13, 8,14)( 9,11,10,12)$ |
| 4D | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 8,16,10)( 2, 7,15, 9)( 3,14, 5,12)( 4,13, 6,11)$ |
| 4E | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5, 8, 6, 7)(13,15,14,16)$ |
| 4F | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 8, 2, 7)( 3,14, 4,13)( 5,12, 6,11)( 9,16,10,15)$ |
| 4G | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,11,16,13)( 2,12,15,14)( 3,10, 5, 8)( 4, 9, 6, 7)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C1 | 4C-1 | 4D | 4E | 4F | 4G | ||
| Size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2B | 2B | 2B | 2B | 2C | 2B | 2B | 2C | |
| Type | |||||||||||||||
| 32.29.1a | R | ||||||||||||||
| 32.29.1b | R | ||||||||||||||
| 32.29.1c | R | ||||||||||||||
| 32.29.1d | R | ||||||||||||||
| 32.29.1e | R | ||||||||||||||
| 32.29.1f | R | ||||||||||||||
| 32.29.1g | R | ||||||||||||||
| 32.29.1h | R | ||||||||||||||
| 32.29.2a | R | ||||||||||||||
| 32.29.2b | R | ||||||||||||||
| 32.29.2c | S | ||||||||||||||
| 32.29.2d | S | ||||||||||||||
| 32.29.2e1 | C | ||||||||||||||
| 32.29.2e2 | C |
Regular extensions
Data not computed