Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $306$ | |
| Group : | $(C_2\times C_8).D_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,5,4,8,2,6,3,7)(9,13,12,15,10,14,11,16), (1,11,6,15,4,10,7,13,2,12,5,16,3,9,8,14) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ 64: 16T84 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
16T306, 32T706 x 2, 32T707, 32T708, 32T709 x 2, 32T710 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,13,11,16,10,14,12,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,13,12,15,10,14,11,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 4, 8, 2, 6, 3, 7)( 9,13,11,16,10,14,12,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 3, 6, 2, 8, 4, 5)( 9,15,12,14,10,16,11,13)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7, 3, 6, 2, 8, 4, 5)( 9,15,11,13,10,16,12,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 4, 5, 2, 8, 3, 6)( 9,15,11,13,10,16,12,14)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 9, 5,13, 3,12, 7,15, 2,10, 6,14, 4,11, 8,16)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 9, 5,13, 4,11, 8,16, 2,10, 6,14, 3,12, 7,15)$ |
| $ 16 $ | $8$ | $16$ | $( 1,11, 5,15, 3, 9, 7,14, 2,12, 6,16, 4,10, 8,13)$ |
| $ 16 $ | $8$ | $16$ | $( 1,11, 5,15, 4,10, 8,13, 2,12, 6,16, 3, 9, 7,14)$ |
| $ 16 $ | $8$ | $16$ | $( 1,13, 7, 9, 3,15, 6,12, 2,14, 8,10, 4,16, 5,11)$ |
| $ 16 $ | $8$ | $16$ | $( 1,13, 8,10, 4,16, 6,12, 2,14, 7, 9, 3,15, 5,11)$ |
| $ 16 $ | $8$ | $16$ | $( 1,15, 7,12, 3,14, 6,10, 2,16, 8,11, 4,13, 5, 9)$ |
| $ 16 $ | $8$ | $16$ | $( 1,15, 8,11, 4,13, 6,10, 2,16, 7,12, 3,14, 5, 9)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 52] |
| Character table: Data not available. |