Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $305$ | |
| Group : | $C_4.C_2^2:D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,14,4,16,2,13,3,15)(5,12,8,10,6,11,7,9), (1,8,2,7)(3,5,4,6)(9,16)(10,15)(11,14)(12,13), (1,3)(2,4)(5,7)(6,8)(9,12)(10,11)(13,15)(14,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 64: 32T239 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T222 x 4, 16T276 x 4, 16T305, 32T491 x 4, 32T492 x 2, 32T493 x 2, 32T641 x 4, 32T642 x 4, 32T704 x 2, 32T705Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14,10,13)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,14,10,13)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15)( 6,16)( 7,13)( 8,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15)( 6,16)( 7,14)( 8,13)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,13, 3,15, 2,14, 4,16)( 5,11, 8,10, 6,12, 7, 9)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,13, 4,16, 2,14, 3,15)( 5,11, 7, 9, 6,12, 8,10)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,13, 3,16, 2,14, 4,15)( 5,11, 7,10, 6,12, 8, 9)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,13, 4,15, 2,14, 3,16)( 5,11, 8, 9, 6,12, 7,10)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 643] |
| Character table: Data not available. |