Group action invariants
Degree $n$: | $16$ | |
Transitive number $t$: | $3$ | |
Group: | $C_2^4$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $1$ | |
$|\Aut(F/K)|$: | $16$ | |
Generators: | (1,6)(2,5)(3,16)(4,15)(7,12)(8,11)(9,14)(10,13), (1,10)(2,9)(3,11)(4,12)(5,14)(6,13)(7,15)(8,16), (1,15)(2,16)(3,5)(4,6)(7,10)(8,9)(11,14)(12,13), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $C_2^3$ x 15 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 15
Degree 4: $C_2^2$ x 35
Degree 8: $C_2^3$ x 15
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,14)( 8,13)( 9,12)(10,11)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,11)( 8,12)( 9,13)(10,14)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7,12)( 8,11)( 9,14)(10,13)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3,14)( 4,13)( 5,11)( 6,12)( 9,16)(10,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 7)( 3,13)( 4,14)( 5,12)( 6,11)( 9,15)(10,16)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5, 7)( 6, 8)(13,16)(14,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5, 8)( 6, 7)(13,15)(14,16)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,13)( 2,14)( 3, 8)( 4, 7)( 5, 9)( 6,10)(11,16)(12,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,14)( 2,13)( 3, 7)( 4, 8)( 5,10)( 6, 9)(11,15)(12,16)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7,10)( 8, 9)(11,14)(12,13)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,16)( 2,15)( 3, 6)( 4, 5)( 7, 9)( 8,10)(11,13)(12,14)$ |
Group invariants
Order: | $16=2^{4}$ | |
Cyclic: | no | |
Abelian: | yes | |
Solvable: | yes | |
GAP id: | [16, 14] |
Character table: |
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1a 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l 2m 2n 2o 2P 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 X.3 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 X.4 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 X.5 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 X.6 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 X.7 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 X.8 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 X.9 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 X.10 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 X.11 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 X.12 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 X.13 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 X.14 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 X.15 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 X.16 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 |