Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $29$ | |
| Group : | $C_2\times D_8$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,9)(2,10)(3,12)(4,11)(5,13)(6,14)(7,15)(8,16), (1,12,5,16,10,4,14,7)(2,11,6,15,9,3,13,8), (1,12)(2,11)(3,9)(4,10)(5,7)(6,8)(13,15)(14,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_{8}$ x 2, $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_{8}$ x 2, $D_4\times C_2$
Low degree siblings
16T29 x 3, 32T15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,15)( 4,16)( 5,14)( 6,13)( 7,12)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,16)( 4,15)( 5,13)( 6,14)( 7,11)( 8,12)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 8,10,11,14,15)( 2, 4, 6, 7, 9,12,13,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4, 5, 7,10,12,14,16)( 2, 3, 6, 8, 9,11,13,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 8,11,15)( 4, 7,12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3, 7,11,16)( 4, 8,12,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 7,14, 4,10,16, 5,12)( 2, 8,13, 3, 9,15, 6,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 8,14, 3,10,15, 5,11)( 2, 7,13, 4, 9,16, 6,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 39] |
| Character table: |
2 5 3 5 3 3 4 3 4 4 4 4 4 5 5
1a 2a 2b 2c 2d 8a 2e 8b 4a 4b 8c 8d 2f 2g
2P 1a 1a 1a 1a 1a 4a 1a 4a 2g 2g 4a 4a 1a 1a
3P 1a 2a 2b 2c 2d 8d 2e 8c 4a 4b 8b 8a 2f 2g
5P 1a 2a 2b 2c 2d 8d 2e 8c 4a 4b 8b 8a 2f 2g
7P 1a 2a 2b 2c 2d 8a 2e 8b 4a 4b 8c 8d 2f 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
X.3 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
X.4 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 1
X.5 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1
X.6 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 1
X.7 1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 -1 1
X.8 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
X.9 2 . -2 . . . . . -2 2 . . -2 2
X.10 2 . 2 . . . . . -2 -2 . . 2 2
X.11 2 . -2 . . A . -A . . A -A 2 -2
X.12 2 . -2 . . -A . A . . -A A 2 -2
X.13 2 . 2 . . A . A . . -A -A -2 -2
X.14 2 . 2 . . -A . -A . . A A -2 -2
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|