Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $289$ | |
| Group : | $C_4.D_4:C_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,2)(3,4)(5,6)(7,8)(9,15,13,12,10,16,14,11), (1,15,5,11,2,16,6,12)(3,9,7,14,4,10,8,13) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $D_{8}$, $C_8:C_2$, $QD_{16}$, $C_2^2:C_4$, $C_8\times C_2$ 32: $C_4\wr C_2$, $C_2^2 : C_8$, 16T26 64: 32T272 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_4\wr C_2$
Low degree siblings
16T289 x 3, 32T667 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $8$ | $( 9,11,14,16,10,12,13,15)$ |
| $ 8, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $8$ | $( 9,12,14,15,10,11,13,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $8$ | $( 9,15,13,12,10,16,14,11)$ |
| $ 8, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $8$ | $( 9,16,13,11,10,15,14,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 2, 2, 2, 2 $ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 2, 2, 2, 2 $ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12,14,15,10,11,13,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 2, 2, 2, 2 $ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 2, 2, 2, 2 $ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,16,13,11,10,15,14,12)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,12,14,15,10,11,13,16)$ |
| $ 8, 4, 4 $ | $2$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 8, 4, 4 $ | $2$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,16,13,11,10,15,14,12)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,12,14,15,10,11,13,16)$ |
| $ 8, 4, 4 $ | $2$ | $8$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 8, 4, 4 $ | $2$ | $8$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,16,13,11,10,15,14,12)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 4, 4 $ | $2$ | $8$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 4, 4 $ | $2$ | $8$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,16,13,11,10,15,14,12)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 8, 4, 4 $ | $2$ | $8$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 4, 4 $ | $2$ | $8$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,16,13,11,10,15,14,12)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 7, 6, 3, 2, 8, 5, 4)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 7, 6, 3, 2, 8, 5, 4)( 9,16,13,11,10,15,14,12)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 8, 6, 4, 2, 7, 5, 3)( 9,15,13,12,10,16,14,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,14, 6,13)( 7,16, 8,15)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 9, 3,11, 5,14, 7,16, 2,10, 4,12, 6,13, 8,15)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 9, 4,12, 5,14, 8,15, 2,10, 3,11, 6,13, 7,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 5,14, 2,10, 6,13)( 3,11, 7,16, 4,12, 8,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 9, 6,13, 2,10, 5,14)( 3,11, 8,15, 4,12, 7,16)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 9, 7,16, 6,13, 3,11, 2,10, 8,15, 5,14, 4,12)$ |
| $ 16 $ | $8$ | $16$ | $( 1, 9, 8,15, 6,13, 4,12, 2,10, 7,16, 5,14, 3,11)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 67] |
| Character table: Data not available. |