Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $265$ | |
| Group : | $C_2\times D_4:D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,15)(2,16)(3,13)(4,14)(5,11)(6,12)(7,10)(8,9), (1,14,9,5)(2,13,10,6), (5,14)(6,13)(7,16)(8,15), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 12, $C_2^3$ x 15 16: $D_4\times C_2$ x 18, $C_2^4$ 32: $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3 64: $(C_4^2 : C_2):C_2$ x 2, 16T105 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $(C_4^2 : C_2):C_2$ x 2
Low degree siblings
16T265 x 15, 32T611 x 4, 32T612 x 4, 32T613 x 4, 32T1383 x 8, 32T1670 x 2, 32T1724 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 7)( 4, 8)( 5,14)( 6,13)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 8,12,15)( 4, 7,11,16)( 5, 6)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5,13)( 6,14)( 9,10)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5, 6)( 7,15)( 8,16)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5, 7, 9,12,14,16)( 2, 4, 6, 8,10,11,13,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5,16, 9,12,14, 7)( 2, 4, 6,15,10,11,13, 8)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 9,12)( 2, 4,10,11)( 5, 7,14,16)( 6, 8,13,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 9,12)( 2, 4,10,11)( 5,16,14, 7)( 6,15,13, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 4, 5, 8, 9,11,14,15)( 2, 3, 6, 7,10,12,13,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 4, 5,15, 9,11,14, 8)( 2, 3, 6,16,10,12,13, 7)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 9,11)( 2, 3,10,12)( 5, 8,14,15)( 6, 7,13,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 9,11)( 2, 3,10,12)( 5,15,14, 8)( 6,16,13, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3,16,12, 7)( 4,15,11, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6, 9,13)( 2, 5,10,14)( 3, 8,12,15)( 4, 7,11,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 6, 9,13)( 2, 5,10,14)( 3,11)( 4,12)( 7,15)( 8,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6, 9,13)( 2, 5,10,14)( 3,15,12, 8)( 4,16,11, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 1746] |
| Character table: Data not available. |