Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $261$ | |
| Group : | $C_2\times C_2\wr C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,15,13,12)(2,16,14,11)(3,9,7,5)(4,10,8,6), (1,6,9,14)(2,5,10,13)(3,8,12,16)(4,7,11,15), (1,7,13,3,9,15,5,12)(2,8,14,4,10,16,6,11) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$, $((C_8 : C_2):C_2):C_2$ x 2
Low degree siblings
16T227 x 4, 16T259 x 8, 16T261 x 3, 16T273 x 4, 16T283 x 4, 32T506, 32T507 x 2, 32T508 x 4, 32T595 x 4, 32T596 x 8, 32T597 x 2, 32T598 x 4, 32T599 x 4, 32T601, 32T602 x 2, 32T633, 32T657, 32T1130 x 2, 32T1796Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,16)( 8,15)( 9,10)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,16)( 8,15)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5, 6)( 7,16)( 8,15)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)( 9,10)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,12,13,15)(10,11,14,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5, 7, 9,12,13,15)( 2, 4, 6, 8,10,11,14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,11,13,16)(10,12,14,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 4, 5, 8, 9,11,13,16)( 2, 3, 6, 7,10,12,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 7,12,15)( 4, 8,11,16)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3, 7,12,15)( 4, 8,11,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 6)( 2, 5)( 3, 8,12,16)( 4, 7,11,15)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3, 8,12,16)( 4, 7,11,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 5, 3)( 2, 8, 6, 4)( 9,15,13,12)(10,16,14,11)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7,13,12, 9,15, 5, 3)( 2, 8,14,11,10,16, 6, 4)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 8, 5, 4)( 2, 7, 6, 3)( 9,16,13,11)(10,15,14,12)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 8,13,11, 9,16, 5, 4)( 2, 7,14,12,10,15, 6, 3)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 850] |
| Character table: Data not available. |