Properties

Label 16T260
Degree $16$
Order $128$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $D_8:C_8$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(16, 260);
 

Group action invariants

Degree $n$:  $16$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $260$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $D_8:C_8$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,16)(2,15)(3,9)(4,10)(5,12)(6,11)(7,14)(8,13), (1,10,7,16,6,13,4,11,2,9,8,15,5,14,3,12)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$8$:  $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$
$16$:  $D_{8}$, $C_8:C_2$, $QD_{16}$, $C_2^2:C_4$, $C_8\times C_2$
$32$:  $C_4\wr C_2$, $C_2^2 : C_8$, 16T26
$64$:  32T272

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_4\wr C_2$

Low degree siblings

16T260, 32T600 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{16}$ $1$ $1$ $0$ $()$
2A $2^{8}$ $1$ $2$ $8$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
2B $2^{4},1^{8}$ $2$ $2$ $4$ $( 9,10)(11,12)(13,14)(15,16)$
2C $2^{8}$ $8$ $2$ $8$ $( 1,16)( 2,15)( 3, 9)( 4,10)( 5,12)( 6,11)( 7,14)( 8,13)$
4A1 $4^{4}$ $1$ $4$ $12$ $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)$
4A-1 $4^{4}$ $1$ $4$ $12$ $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,16,12,15)$
4B $4^{4}$ $2$ $4$ $12$ $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,13,10,14)(11,16,12,15)$
4C1 $4^{2},1^{8}$ $2$ $4$ $6$ $( 9,13,10,14)(11,16,12,15)$
4C-1 $4^{2},1^{8}$ $2$ $4$ $6$ $(1,6,2,5)(3,7,4,8)$
4D1 $4^{2},2^{4}$ $2$ $4$ $10$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14,10,13)(11,15,12,16)$
4D-1 $4^{2},2^{4}$ $2$ $4$ $10$ $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,10)(11,12)(13,14)(15,16)$
4E $4^{4}$ $8$ $4$ $12$ $( 1,11, 2,12)( 3,14, 4,13)( 5,16, 6,15)( 7,10, 8, 9)$
8A1 $8^{2}$ $2$ $8$ $14$ $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,12,13,15,10,11,14,16)$
8A-1 $8^{2}$ $2$ $8$ $14$ $( 1, 8, 6, 3, 2, 7, 5, 4)( 9,16,14,11,10,15,13,12)$
8B1 $8^{2}$ $2$ $8$ $14$ $( 1, 8, 6, 3, 2, 7, 5, 4)( 9,15,14,12,10,16,13,11)$
8B-1 $8^{2}$ $2$ $8$ $14$ $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,11,13,16,10,12,14,15)$
8C $8,2^{2},1^{4}$ $4$ $8$ $9$ $( 3, 4)( 7, 8)( 9,16,13,12,10,15,14,11)$
8D $8^{2}$ $4$ $8$ $14$ $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,15,14,12,10,16,13,11)$
8E1 $8,4^{2}$ $4$ $8$ $13$ $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,11,14,15,10,12,13,16)$
8E-1 $8,4^{2}$ $4$ $8$ $13$ $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,12,14,16,10,11,13,15)$
8E3 $8,2^{2},1^{4}$ $4$ $8$ $9$ $( 3, 4)( 7, 8)( 9,15,13,11,10,16,14,12)$
8E-3 $8,2^{2},1^{4}$ $4$ $8$ $9$ $( 1, 3, 6, 7, 2, 4, 5, 8)(11,12)(15,16)$
8F1 $8,4^{2}$ $4$ $8$ $13$ $( 1, 8, 5, 4, 2, 7, 6, 3)( 9,14,10,13)(11,16,12,15)$
8F-1 $8^{2}$ $4$ $8$ $14$ $( 1, 8, 6, 3, 2, 7, 5, 4)( 9,11,13,16,10,12,14,15)$
8F3 $8,4^{2}$ $4$ $8$ $13$ $( 1, 8, 5, 4, 2, 7, 6, 3)( 9,13,10,14)(11,15,12,16)$
8F-3 $8,2^{2},1^{4}$ $4$ $8$ $9$ $( 1, 3, 6, 7, 2, 4, 5, 8)( 9,10)(13,14)$
8G1 $8^{2}$ $8$ $8$ $14$ $( 1,13, 6, 9, 2,14, 5,10)( 3,15, 7,12, 4,16, 8,11)$
8G-1 $8^{2}$ $8$ $8$ $14$ $( 1, 9, 5,13, 2,10, 6,14)( 3,12, 8,15, 4,11, 7,16)$
16A1 $16$ $8$ $16$ $15$ $( 1,15, 4,10, 5,11, 7,14, 2,16, 3, 9, 6,12, 8,13)$
16A-1 $16$ $8$ $16$ $15$ $( 1, 9, 8,16, 6,14, 3,11, 2,10, 7,15, 5,13, 4,12)$
16A3 $16$ $8$ $16$ $15$ $( 1,13, 7,11, 6, 9, 4,15, 2,14, 8,12, 5,10, 3,16)$
16A-3 $16$ $8$ $16$ $15$ $( 1,11, 3,13, 5,16, 8,10, 2,12, 4,14, 6,15, 7, 9)$

Malle's constant $a(G)$:     $1/4$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $128=2^{7}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  $4$
Label:  128.68
magma: IdentifyGroup(G);
 
Character table:    32 x 32 character table

magma: CharacterTable(G);