Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $217$ | |
| Group : | $C_2^4.C_2^3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,4,2,3)(5,7,14,15)(6,8,13,16)(9,12,10,11), (3,12)(4,11)(5,14)(6,13)(7,15)(8,16), (1,14,10,6)(2,13,9,5)(3,15,12,8)(4,16,11,7) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 32T239 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2
Low degree siblings
16T208 x 4, 16T210 x 4, 16T217 x 7, 16T247 x 8, 32T451 x 2, 32T452, 32T453 x 4, 32T454 x 8, 32T455 x 4, 32T459 x 8, 32T460, 32T478 x 4, 32T479 x 2, 32T564 x 2, 32T565 x 2, 32T1567 x 2, 32T1705Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7,15)( 8,16)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,12)( 4,11)( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 5,13)( 6,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,12)( 4,11)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,15)( 8,16)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5, 6)( 7,15)( 8,16)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5,13)( 6,14)( 7,16)( 8,15)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5,14)( 6,13)( 7, 8)( 9,10)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 8,14,16)( 6, 7,13,15)( 9,11,10,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 9,11)( 2, 4,10,12)( 5, 7,14,15)( 6, 8,13,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 9,11)( 2, 4,10,12)( 5, 8, 6, 7)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 9,12)( 2, 3,10,11)( 5, 8,14,16)( 6, 7,13,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7,11,15)( 4, 8,12,16)( 9,14,10,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5,10,13)( 2, 6, 9,14)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3,16,11, 8)( 4,15,12, 7)( 9,14,10,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5,10,13)( 2, 6, 9,14)( 3,16,12, 7)( 4,15,11, 8)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 7,10,16)( 2, 8, 9,15)( 3, 6)( 4, 5)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 9,15)( 2, 8,10,16)( 3, 6,11,13)( 4, 5,12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 9,15)( 2, 8,10,16)( 3,14,11, 5)( 4,13,12, 6)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 7)( 2, 8)( 3,14,12, 6)( 4,13,11, 5)( 9,15)(10,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3,14, 4,13)( 5,12, 6,11)( 9,15,10,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 621] |
| Character table: Data not available. |