Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $209$ | |
| Group : | $C_4.C_2^2:D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,7,15,12,2,8,16,11)(3,5,13,10,4,6,14,9), (1,15)(2,16)(3,13)(4,14)(5,8,6,7)(9,11,10,12), (1,13,2,14)(3,16,4,15)(5,12,6,11)(7,9,8,10) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 64: 32T239 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$
Low degree siblings
16T209 x 3, 16T279 x 2, 32T456 x 2, 32T457 x 2, 32T458 x 2, 32T647 x 2, 32T648 x 4, 32T649, 32T650Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5,11, 6,12)( 7,10, 8, 9)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5,11)( 6,12)( 7,10)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,11)( 6,12)( 7,10)( 8, 9)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 9)( 6,10)( 7,11)( 8,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 9, 6,10)( 7,11, 8,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5, 9, 6,10)( 7,11, 8,12)(13,15,14,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 3, 8, 2, 6, 4, 7)( 9,13,12,16,10,14,11,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 3, 8, 2, 6, 4, 7)( 9,14,12,15,10,13,11,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 4, 7, 2, 6, 3, 8)( 9,13,11,15,10,14,12,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 4, 7, 2, 6, 3, 8)( 9,14,11,16,10,13,12,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 5,15,10, 2, 6,16, 9)( 3, 8,13,11, 4, 7,14,12)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 5,15, 9, 2, 6,16,10)( 3, 8,13,12, 4, 7,14,11)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 4, 6, 2, 8, 3, 5)( 9,15,11,14,10,16,12,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 4, 6, 2, 8, 3, 5)( 9,16,11,13,10,15,12,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 3, 5, 2, 8, 4, 6)( 9,15,12,13,10,16,11,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 3, 5, 2, 8, 4, 6)( 9,16,12,14,10,15,11,13)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7,15,12, 2, 8,16,11)( 3, 5,13,10, 4, 6,14, 9)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7,15,11, 2, 8,16,12)( 3, 5,13, 9, 4, 6,14,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,11, 6,12)( 7,10, 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,11)( 6,12)( 7,10)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,12)( 6,11)( 7, 9)( 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,15)( 2,16)( 3,13)( 4,14)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3,13, 4,14)( 5, 9, 6,10)( 7,11, 8,12)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3,13, 4,14)( 5,10, 6, 9)( 7,12, 8,11)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 623] |
| Character table: Data not available. |