Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $205$ | |
| Group : | $(C_2\times C_4).C_2^4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (5,7,6,8)(9,11,10,12), (1,6,3,7,2,5,4,8)(9,15,12,13,10,16,11,14), (1,9)(2,10)(3,12)(4,11)(5,15)(6,16)(7,14)(8,13), (9,10)(11,12)(13,14)(15,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_4$ x 8, $C_2^2$ x 35 8: $D_{4}$ x 4, $C_4\times C_2$ x 28, $C_2^3$ x 15 16: $D_4\times C_2$ x 6, $Q_8:C_2$ x 2, $C_4\times C_2^2$ x 14, $C_2^4$ 32: $C_2 \times (C_4\times C_2):C_2$, $C_4 \times D_4$ x 4, $C_2^2 \times D_4$, 32T34 64: 32T204 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$
Low degree siblings
16T205, 32T442, 32T443 x 2, 32T444, 32T1959 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 5, 7, 6, 8)( 9,11,10,12)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 7, 6, 8)( 9,12,10,11)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 8, 6, 7)( 9,11,10,12)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 5, 8, 6, 7)( 9,12,10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 3, 8, 2, 6, 4, 7)( 9,15,12,13,10,16,11,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 3, 8, 2, 6, 4, 7)( 9,16,12,14,10,15,11,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 4, 7, 2, 6, 3, 8)( 9,15,11,14,10,16,12,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 5, 4, 7, 2, 6, 3, 8)( 9,16,11,13,10,15,12,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 3,12, 2,10, 4,11)( 5,13, 8,16, 6,14, 7,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 4,11, 2,10, 3,12)( 5,13, 7,15, 6,14, 8,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 3,12, 2,10, 4,11)( 5,14, 8,15, 6,13, 7,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 4,11, 2,10, 3,12)( 5,14, 7,16, 6,13, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15)( 6,16)( 7,14)( 8,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,16)( 6,15)( 7,13)( 8,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,16, 6,15)( 7,13, 8,14)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,13, 4,15, 2,14, 3,16)( 5, 9, 7,11, 6,10, 8,12)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,13, 3,16, 2,14, 4,15)( 5, 9, 8,12, 6,10, 7,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,13, 3,16, 2,14, 4,15)( 5,10, 8,11, 6, 9, 7,12)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,13, 4,15, 2,14, 3,16)( 5,10, 7,12, 6, 9, 8,11)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,13, 3,16, 2,14, 4,15)( 5,11, 7,10, 6,12, 8, 9)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,13, 4,15, 2,14, 3,16)( 5,11, 8, 9, 6,12, 7,10)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,13, 4,15, 2,14, 3,16)( 5,12, 8,10, 6,11, 7, 9)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,13, 3,16, 2,14, 4,15)( 5,12, 7, 9, 6,11, 8,10)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,15, 4,14, 2,16, 3,13)( 5,11, 7,10, 6,12, 8, 9)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,15, 3,13, 2,16, 4,14)( 5,11, 8, 9, 6,12, 7,10)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,15, 3,13, 2,16, 4,14)( 5,12, 8,10, 6,11, 7, 9)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1,15, 4,14, 2,16, 3,13)( 5,12, 7, 9, 6,11, 8,10)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 1688] |
| Character table: Data not available. |