Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $20$ | |
| Group : | $(C_2 \times Q_8):C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,7,2,8)(3,6,4,5)(9,12,10,11)(13,15,14,16), (1,2)(3,4)(5,6)(7,8), (1,4,2,3)(5,7,6,8)(9,16,10,15)(11,13,12,14), (1,16)(2,15)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $C_2^3$ x 15 16: $C_2^4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7
Degree 8: $C_2^3$
Low degree siblings
16T20 x 4, 32T6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,16,10,15)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,12,10,11)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 9)( 2,10)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 9, 2,10)( 3,15, 4,16)( 5,14, 6,13)( 7,11, 8,12)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11, 2,12)( 3,13, 4,14)( 5,15, 6,16)( 7,10, 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 5,15)( 6,16)( 7,10)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,13)( 2,14)( 3,12)( 4,11)( 5, 9)( 6,10)( 7,15)( 8,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,13, 2,14)( 3,12, 4,11)( 5, 9, 6,10)( 7,15, 8,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3,10, 4, 9)( 5,12, 6,11)( 7,14, 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,15)( 2,16)( 3,10)( 4, 9)( 5,12)( 6,11)( 7,14)( 8,13)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 50] |
| Character table: |
2 5 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1a 2a 2b 4a 4b 4c 4d 4e 4f 2c 4g 4h 2d 2e 4i 4j 2f
2P 1a 1a 1a 2b 2b 2b 2b 2b 2b 1a 2b 2b 1a 1a 2b 2b 1a
3P 1a 2a 2b 4a 4b 4c 4d 4e 4f 2c 4g 4h 2d 2e 4i 4j 2f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1
X.3 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1
X.4 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1
X.5 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1
X.6 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1
X.7 1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1
X.8 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1
X.9 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1
X.10 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1
X.11 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1
X.12 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
X.13 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
X.14 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1
X.15 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1
X.16 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
X.17 4 . -4 . . . . . . . . . . . . . .
|