Properties

Label 16T1954
Order \(20922789888000\)
n \(16\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No
Group: $S_{16}$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1954$
Group :  $S_{16}$
Parity:  $-1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 8: None

Low degree siblings

32T2801205

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 231 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $20922789888000=2^{15} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.