Properties

Label 16T1888
Order \(147456\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1888$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,2,11)(3,8,4,7)(5,10,15,13)(6,9,16,14), (3,5,15,4,6,16)(7,8)(9,11)(10,12)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $C_2^2:C_4$
72:  $C_3^2:D_4$
144:  12T79
1152:  $S_4\wr C_2$
2304:  12T237
36864:  16T1826
73728:  32T1832106

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $S_4\wr C_2$

Low degree siblings

16T1888 x 7, 32T2076214 x 4, 32T2076215 x 4, 32T2076216 x 4, 32T2076217 x 4, 32T2076218 x 4, 32T2076219 x 4, 32T2076220 x 4, 32T2076340 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 130 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $147456=2^{14} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.