Properties

Label 16T1887
Order \(147456\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1887$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14)(2,13)(3,10,15,11,6,8,4,9,16,12,5,7), (1,5,3,15)(2,6,4,16)(7,11,13,9,8,12,14,10), (1,13)(2,14)(3,7,4,8)(5,10)(6,9)(11,16)(12,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$ x 2
8:  $D_{4}$ x 2, $C_2^3$
12:  $D_{6}$ x 6
16:  $D_4\times C_2$
24:  $S_3 \times C_2^2$ x 2
36:  $S_3^2$
48:  12T28 x 2
72:  12T37
144:  12T81
576:  $(A_4\wr C_2):C_2$
1152:  12T195
2304:  12T240
36864:  16T1827
73728:  32T1832161

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $(A_4\wr C_2):C_2$

Low degree siblings

16T1887 x 7, 32T2076207 x 4, 32T2076208 x 4, 32T2076209 x 4, 32T2076210 x 4, 32T2076211 x 4, 32T2076212 x 4, 32T2076213 x 4, 32T2076357 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 148 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $147456=2^{14} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.