Properties

Label 16T1884
Order \(147456\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1884$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,5,12,16,14,4,9)(2,8,6,11,15,13,3,10), (3,5,15,4,6,16)(7,8)(9,11,13)(10,12,14), (1,8,2,7)(3,14,15,12,6,9,4,13,16,11,5,10)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
72:  $C_3^2:D_4$
144:  12T77
1152:  $S_4\wr C_2$
2304:  12T235
36864:  16T1829
73728:  32T1832104

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $S_4\wr C_2$

Low degree siblings

16T1884 x 7, 32T2076186 x 4, 32T2076187 x 4, 32T2076188 x 4, 32T2076189 x 4, 32T2076190 x 4, 32T2076191 x 4, 32T2076192 x 4, 32T2076378 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 136 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $147456=2^{14} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.