Properties

Label 16T1871
Order \(73728\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1871$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,10,6,16,8,14,3,12,2,9,5,15,7,13,4,11), (1,16,2,15)(3,12)(4,11)(5,9)(6,10)(7,14,8,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
72:  $C_3^2:D_4$
1152:  $S_4\wr C_2$ x 3
18432:  16T1793
36864:  32T1515321

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $S_4\wr C_2$

Low degree siblings

16T1871 x 3, 32T1831797 x 2, 32T1831798 x 2, 32T1831799 x 2, 32T1831874 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 104 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $73728=2^{13} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.