Properties

Label 16T1870
Order \(73728\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1870$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,5,16,3)(2,6,15,4)(7,14,9,11,8,13,10,12), (1,9,6,11,15,7)(2,10,5,12,16,8)(3,13,4,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$ x 2
8:  $D_{4}$
12:  $D_{6}$ x 2
24:  $D_{12}$, $(C_6\times C_2):C_2$
36:  $S_3^2$
72:  12T38
576:  $(A_4\wr C_2):C_2$
1152:  12T196
18432:  16T1795
36864:  32T1515339

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $(A_4\wr C_2):C_2$

Low degree siblings

16T1870 x 3, 32T1831794 x 2, 32T1831795 x 2, 32T1831796 x 2, 32T1831924 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 83 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $73728=2^{13} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.