Properties

Label 16T1869
Order \(73728\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1869$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,15,5,11,4,10,8,14)(2,16,6,12,3,9,7,13), (1,13,5,9,3,16,2,14,6,10,4,15)(7,11,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
72:  $C_3^2:D_4$
1152:  $S_4\wr C_2$
18432:  16T1792
36864:  32T1515322

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $S_4\wr C_2$

Low degree siblings

16T1869 x 3, 32T1831791 x 2, 32T1831792 x 2, 32T1831793 x 2, 32T1831932 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 77 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $73728=2^{13} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.