Properties

Label 16T1862
Order \(73728\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1862$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,3,7,6,11)(2,10,4,8,5,12)(13,16)(14,15), (1,6)(2,5)(3,16,4,15)(7,13,11)(8,14,12)(9,10), (1,15,5)(2,16,6)(3,4)(9,10)(11,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
8:  $D_{4}$
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $(C_6\times C_2):C_2$, $D_4 \times C_3$
36:  $C_6\times S_3$
72:  12T42
288:  $A_4\wr C_2$
576:  12T158
1152:  12T208
18432:  16T1783
36864:  32T1515348

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $A_4\wr C_2$

Low degree siblings

16T1862 x 3, 32T1831766 x 2, 32T1831767 x 2, 32T1831768 x 2, 32T1831936 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 152 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $73728=2^{13} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.