Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $186$ | |
| Group : | $\GL(2,Z/4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,2,14)(3,10,4,9)(5,7,6,8)(11,15,12,16), (1,5)(2,6)(3,4)(7,12)(8,11)(15,16), (1,3,16)(2,4,15)(9,14,12)(10,13,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 24: $S_4$, $(C_6\times C_2):C_2$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $S_4\times C_2$
Low degree siblings
12T49 x 2, 12T50, 12T52, 16T193, 24T153, 24T154, 24T155 x 2, 24T156, 24T157, 24T158, 24T159, 24T165, 24T166, 32T392Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $( 5,15)( 6,16)( 7,13)( 8,14)( 9,10)(11,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3, 6,16)( 4, 5,15)( 7,14, 9)( 8,13,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 6, 6, 2, 2 $ | $8$ | $6$ | $( 1, 2)( 3, 5,16, 4, 6,15)( 7,13, 9, 8,14,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 3, 6,16)( 2, 4, 5,15)( 7,13,12,10)( 8,14,11, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 7, 2, 8)( 3, 9, 4,10)( 5,11, 6,12)(13,16,14,15)$ |
| $ 6, 6, 2, 2 $ | $8$ | $6$ | $( 1, 7,16,12, 6,14)( 2, 8,15,11, 5,13)( 3, 9)( 4,10)$ |
| $ 6, 6, 2, 2 $ | $8$ | $6$ | $( 1, 7, 3,12, 6, 9)( 2, 8, 4,11, 5,10)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 7,15,10)( 2, 8,16, 9)( 3,12, 5,13)( 4,11, 6,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 7)( 2, 8)( 3,14)( 4,13)( 5,11)( 6,12)( 9,16)(10,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5, 7)( 6, 8)(13,16)(14,15)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 195] |
| Character table: |
2 5 3 2 5 2 5 3 5 3 2 2 3 4 4
3 1 . 1 1 1 . . . . 1 1 . . 1
1a 2a 3a 2b 6a 2c 4a 2d 4b 6b 6c 4c 2e 2f
2P 1a 1a 3a 1a 3a 1a 2c 1a 2b 3a 3a 2d 1a 1a
3P 1a 2a 1a 2b 2b 2c 4a 2d 4b 2f 2f 4c 2e 2f
5P 1a 2a 3a 2b 6a 2c 4a 2d 4b 6c 6b 4c 2e 2f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 1 -1 1 -1 1 1 -1 1 1
X.3 1 -1 1 1 1 1 -1 1 1 -1 -1 1 -1 -1
X.4 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.5 2 . -1 2 -1 2 . 2 . -1 -1 . 2 2
X.6 2 . -1 2 -1 2 . 2 . 1 1 . -2 -2
X.7 2 . 2 -2 -2 2 . -2 . . . . . .
X.8 2 . -1 -2 1 2 . -2 . A -A . . .
X.9 2 . -1 -2 1 2 . -2 . -A A . . .
X.10 3 -1 . 3 . -1 1 -1 -1 . . 1 -1 3
X.11 3 -1 . 3 . -1 1 -1 1 . . -1 1 -3
X.12 3 1 . 3 . -1 -1 -1 -1 . . 1 1 -3
X.13 3 1 . 3 . -1 -1 -1 1 . . -1 -1 3
X.14 6 . . -6 . -2 . 2 . . . . . .
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|