Properties

Label 16T1849
Order \(49152\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1849$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,13)(2,4,14)(5,9,12,6,10,11)(7,8), (1,10,2,9)(3,8,6,12,16,13)(4,7,5,11,15,14), (1,7,5,4,9,16,14,11,2,8,6,3,10,15,13,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$ x 3
48:  $S_4\times C_2$ x 3
96:  $V_4^2:S_3$
192:  $Q_8:S_4$ x 2, $V_4^2:(S_3\times C_2)$ x 2, 12T100
384:  $C_2 \wr S_4$ x 2, 16T741
768:  16T1068
1536:  24T3296, 24T3382 x 2
3072:  16T1537
6144:  32T398626
24576:  48T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $S_4$

Degree 8: $Q_8:S_4$

Low degree siblings

16T1847 x 4, 16T1849 x 3, 32T1515630 x 2, 32T1515631 x 2, 32T1515632 x 2, 32T1515633 x 4, 32T1515634 x 2, 32T1515635 x 2, 32T1515636 x 2, 32T1515644 x 2, 32T1515645 x 2, 32T1515646 x 2, 32T1515647 x 2, 32T1515648 x 2, 32T1515649 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 104 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $49152=2^{14} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.