Properties

Label 16T1845
Order \(49152\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1845$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,6,9,16,13,2,8,5,10,15,14)(3,12)(4,11), (1,11,5,10,4,13)(2,12,6,9,3,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
12:  $A_4$, $C_6\times C_2$
24:  $A_4\times C_2$ x 3
48:  $C_2^2 \times A_4$
96:  $C_2^4:C_6$ x 3
192:  $C_2\wr A_4$ x 6, 12T87 x 3, 16T417 x 2
384:  16T722 x 3
768:  24T2232
1536:  24T3049 x 3
3072:  16T1515
6144:  32T398882
24576:  48T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $A_4$

Degree 8: $C_2\wr A_4$

Low degree siblings

16T1845 x 7, 32T1515616 x 4, 32T1515617 x 4, 32T1515618 x 4, 32T1515619 x 4, 32T1515620 x 4, 32T1515621 x 4, 32T1515622 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 140 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $49152=2^{14} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.