Properties

Label 16T1806
Order \(24576\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1806$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,3)(2,5,4)(7,12,13,8,11,14), (1,14,2,13)(3,11,6,8,16,10,4,12,5,7,15,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
8:  $D_{4}$
12:  $A_4$, $C_6\times C_2$
24:  $A_4\times C_2$ x 3, $D_4 \times C_3$
48:  $C_2^2 \times A_4$
96:  $C_2^4:C_6$, 12T51
192:  12T87
384:  12T134
1536:  16T1299
6144:  16T1655
12288:  32T723243

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $C_2^4:C_6$

Low degree siblings

16T1806 x 3, 32T1120285 x 2, 32T1120286 x 2, 32T1120287 x 2, 32T1120480 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 88 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $24576=2^{13} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.