Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1776$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $8$ | |
| Generators: | (1,11)(2,12)(3,10,4,9)(5,15,14,7)(6,16,13,8), (1,3,14,8,10,12,6,15)(2,4,13,7,9,11,5,16), (1,9)(2,10)(3,11)(4,12)(5,6)(7,8)(13,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 3 64: $((C_8 : C_2):C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 16T79, 16T146 x 2 128: $C_2 \wr C_2\wr C_2$ x 4, 16T227 x 2, 16T240, 32T1151 x 2 256: 16T482 x 2, 16T502, 16T532, 16T542 x 2, 16T543 512: 32T12349 x 2, 32T13346 1024: 16T1174 2048: 32T126555 4096: 16T1559 8192: 32T520843 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T1773 x 16, 16T1776 x 15, 32T723802 x 8, 32T723803 x 8, 32T723804 x 16, 32T723805 x 8, 32T723806 x 8, 32T723807 x 8, 32T723808 x 8, 32T723809 x 8, 32T723810 x 8, 32T723811 x 8, 32T723812 x 8, 32T723813 x 8, 32T723814 x 8, 32T723815 x 8, 32T723816 x 8, 32T723817 x 8, 32T723818 x 8, 32T723819 x 8, 32T723820 x 8, 32T723821 x 8, 32T723822 x 8, 32T723823 x 8, 32T723824 x 8, 32T723825 x 8, 32T723826 x 8, 32T723827 x 8, 32T723828 x 8, 32T723829 x 8, 32T723830 x 8, 32T723831 x 8, 32T723832 x 8, 32T723895 x 8, 32T723896 x 8, 32T723897 x 8, 32T723898 x 8, 32T723899 x 8, 32T723900 x 8, 32T723901 x 8, 32T723902 x 8, 32T723903 x 8, 32T723904 x 8, 32T723905 x 8, 32T723906 x 8, 32T723907 x 8, 32T723908 x 8, 32T723909 x 8, 32T723910 x 8, 32T723911 x 8, 32T723912 x 8, 32T723913 x 8, 32T723914 x 8, 32T723915 x 8, 32T723916 x 8, 32T723917 x 8, 32T723918 x 8, 32T723919 x 8, 32T723920 x 8, 32T723921 x 8, 32T723922 x 8, 32T723923 x 8, 32T723924 x 8, 32T726566 x 8, 32T726567 x 8, 32T728487 x 8, 32T744912 x 4, 32T744926 x 4, 32T744962 x 4, 32T745622 x 4, 32T745653 x 4, 32T745669 x 4, 32T842697 x 4, 32T842711 x 4, 32T874202 x 4, 32T874543 x 4, 32T968055 x 4, 32T968172 x 4, 32T1038020 x 4, 32T1038021 x 4, 32T1061691 x 4, 32T1061694 x 4, 32T1098797 x 4, 32T1098799 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 136 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $16384=2^{14}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |